Numerous circuit topologies have been proposed for divide-by-m injection-locked frequency dividers (ILFDs), most of which have been optimized for division by even numbers, especially divide-by-2. It has been more difficult to realize division by odd numbers, such as divide-by-3. This paper describes a CMOS injection locked frequency divider (ILFD) that can operate equally well in both divide-by-two and divide-by-three modes. The ILFD is based on a cross-coupled CMOS LC-tank oscillator having capacitive and direct injection via both NMOS and PMOS transistors connected across the LC tank. The circuit is similar to a conventional CMOS ILFD for divide-by-two operation with direct injection, but it combines the effects of two independent injection techniques to maximize the width of its divide-by-three locking range. The paper presents the circuit architecture, SPICE simulations, and experimental measurements.
ρ-switching is a technique whereby the topology of an injection-locked frequency divider is changed to make it divide by different values. This paper describes an experimental proof of concept whereby a CMOS LC injection-locked frequency divider with tail injection is switched between two different modes (divide-by-2 and divide-by-4) on the fly. The operation of the circuit is explained qualitatively, verified by simulation and demonstrated experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.