Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to 40°C for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular CO 2 concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.
To investigate the role of glycine betaine in photosynthesis under stress, a transgenic wheat (Triticum aestivum L.) line T6 overaccumulating glycine betaine and its wild type Shi4185 were used. Seedlings were exposed to conditions of drought (30%, PEG-6000), heat (40°C) and their combination. The results revealed ultrastructural damage to the chloroplast and thylakoid lamellae with the withered phenotype by both drought and heat stress, and the damage was exacerbated by the combination of drought and heat. The appearance of a K step in the typical O-J-I-P curve and the decrease of Hill activity indicated a reduction of oxygen evolving complex function caused by stress. The greater damage was found in wild type than T6. Overaccumulation of glycine betaine in T6 could protect lipids in the thylakoid membrane from damage and stabilize the index of unsaturated fatty acids under stress. A lower ratio of monogalactosyl diacylglycerol/digalactosyl diacylglycerol and higher phosphatidylglycerol content in the thylakoid membrane of T6 were also observed under stress. These effects can promote stability of the thylakoid membrane. Otherwise, glycine betaine overaccumulation decreased photoinhibition of PSII under stress. The results also suggest that xanthophyll cycle-dependent non-radiative energy dissipation may be involved in the GB-mediated effects on PSII function under stress conditions.
Wheat, which is the most important food crop worldwide, is a cereal that presents considerable potential for increased yield. A new wheat (Triticum aestivum L.) mutant tasg1 with delayed leaf senescence was constructed using ethyl methane sulfonate as a mutagen. Natural senescence in tasg1 was distinctly delayed in the field, as indicated by the slower progression of chlorophyll degradation, net photosynthetic rate than its wild type. Further, the malondialdehyde and the hydrogen peroxide content was lower and antioxidative enzyme activity higher in tasg1 than those in its wild type during both natural senescence and methyl viologen-induced oxidative stress. The results suggest that tasg1 is a functional stay-green wheat mutant with the Type B (in which senescence initiates on schedule, but progresses at a rate lower than that in the respective WTs) or Type A (in which senescence initiates late but proceeds at a normal rate) and B combination and that the competence of the antioxidant defense system is one of the most important mechanisms underlying the expression of the stay-green phenotype.
Glycine betaine (GB) is an effective compatible solute that improves the tolerance in plants to various stresses. We investigated the effects of 2 mM GB applied to the roots of a tobacco (Nicotiana tabacum L.) cultivar on enhancing photosynthesis under low-temperature (LT) stress (5/5 °C, 12/12 h, 300 μmol m -2 s -1 ) and in the subsequent recovery (25/18 °C) from the stress. The net photosynthetic rate, intrinsic efficiency measured as the ratio of variable to maximum fluorescence, and actual efficiency of the photochemistry of photosystem 2 as well as the ATPase activity in the thylakoid membrane decreased, and a distinct K step in the fluorescence transient O-J-I-P appeared under cold stress. Exogenous GB alleviated the decrease in all these parameters. The LT-stress induced the accumulation of 33-66 kDa polypeptides and decreased the proportion of unsaturated fatty acids in the thylakoid membrane. In plants subjected to LT-stress, GB protected these polypeptides from damage and enhanced the proportion of unsaturated fatty acids. An increase in non-radiative energy dissipation (NPQ) may be involved in the improvement of the function of the thylakoid membrane by GB since exogenous GB protected violaxanthin de-epoxidase and enhanced NPQ.
Background. Hypervirulent Klebsiella pneumoniae lacking classical virulence factors is uncommon, and the virulence mechanisms of this organism are not understood.Methods. Following a retrospective study of carbapenem-resistant K. pneumoniae based on core genome multilocus sequence typing (cgMLST), isolates that caused high mortality were investigated with a genome-wide association study (GWAS), proteome analysis and an animal model.Results. The sublineage of sequence type 11 (ST11) K. pneumoniae, which belongs to complex type 3176 (CT3176) and K-locus 47 (KL47), was highlighted due to the high mortality of infected patients. GWAS analysis showed that ampR was associated with the CT3176 isolates. In a mouse model, the mortality of ampR-carrying isolates was comparable to that of the typical hypervirulent isolate GM2. Even during the first 24 hours of infection, the bacterial load and pathological changes of the ampR-carrying isolates in the lungs were more severe than those of GM2. The ampR complement mutant was able to enhance the virulence of the KL47 isolate but not the virulence of KL1. Proteome analysis showed that the expression of WcaJ in the ampR + isolates was significantly higher than that in the ampRisolates, and this result was also confirmed by transcription tests and capsule staining. It is suggested that the enhancement of the initial stage of capsule synthesis may be the cause of the high virulence of these non-hypermucoviscous ST11 carbapenem-resistant K. pneumoniae isolates.Conclusions. Non-hypermucoviscous ST11 hypervirulent carbapenem-resistant K. pneumoniae warrants continued surveillance and investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.