The glass transitions of poly(methyl methacrylate) (PMMA) oligomer confined in alumina nanopores with diameters much larger than the polymer chain dimension were investigated. Compared with the case of 80 nm nanopores, PMMA oligomer confined in 300 nm nanopores shows three glass transition temperatures (from from low to high, denoted as Tg,lo, Tg,inter, and Tg,hi). Such phenomenon can be interpreted by a three-layer model: there exists an interphase between the adsorbed layer and core volume called the interlayer, which has an intermediate Tg. The behavior of multi-Tg parameters is ascribed to the propagation of the interfacial interaction during vitrifaction process. Besides, because of the nonequilibrium effect in the adsorbed layer, the cooling rate plays an important role in the glass transitions: the fast cooling rate generates a single Tg; the intermediate cooling rate induces three Tg values, while the ultraslow cooling rate results in two Tg values. With decreasing the cooling rate, the thickness of interlayer would continually decrease, while those of the adsorbed layer and core volume gradually increase; meanwhile, the Tg,lo gradually increases, Tg,inter almost stays constant, and the Tg,hi value keeps decreasing. In such a process, the dynamic exchanges between the interlayer and adsorbed layer, core volume should be dominant.
This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m-2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2 nd and 3 rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m-2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.