Since 2013, West Africa has encountered the largest Ebola virus (EBOV) disease outbreak on record, and Sierra Leone is the worst-affected country, with nearly half of the infections. By means of next-generation sequencing and phylogeographic analysis, the epidemiology and transmission of EBOV have been well elucidated. However, the intra-host dynamics that mainly reflect viral-host interactions still need to be studied. Here, we show a total of 710 intra-host single nucleotide variations (iSNVs) from deep-sequenced samples from EBOV-infected patients, through a well-tailored bioinformatics pipeline. We present a comprehensive distribution of iSNVs during this outbreak and along the EBOV genome. Analyses of iSNV and its allele frequency reveal that VP40 is the most conserved gene during this outbreak, and thus it would be an ideal therapeutic target. In the co-occurring iSNV network, varied iSNV sites present different selection features. Intriguingly, the T-to-C substitutions at the 3'-UTR of the nucleoprotein (NP; positions 3008 and 3011), observed in many patients, result in the upregulation of the transcription of NP through an Ebola mini-genome reporting system. Additionally, no iSNV enrichment within B-cell epitopes of GP has been observed.
BACKGROUND Microbiota that live in the gut of insects have a wide range of effects on host nutrition, physiology, and behavior. They may shape the adaptation of their hosts to different habitats and lifestyles. To characterize the gut microbiota of fruit borers comprehensively, we compared bacterial communities among Grapholita molesta, Conogethes punctiferalis, Carposina sasakii, and Cydia pomonella, which are serious lepidopteran pests. We selected G. molesta as a representative pest to more explicitly test the influence of host dietary niche on the insect gut microbiome, and compared the bacterial microbial communities of G. molesta fed different diets (peach shoots and apple) using Illumina high‐throughput sequencing technology. RESULTS The results show that Proteobacteria and Firmicutes are dominant in their gut microbiota. The C. sasakii had the highest richness values and G. molesta (shoot‐feeding) had the highest diversity, whereas C. pomonella and G. molesta (fruit‐feeding) had the lowest bacterial richness and diversity, respectively. The ANOSIM analysis revealed significant differences in the structure of gut microbiota among different insects. In addition, G. molesta with a different feeding diet had significant differences in gut microbiota composition. PICRUSt analysis indicated that most functional prediction categories were related to metabolism. CONCLUSION Our results show that gut microbiota composition is affected significantly not only by host species but also host diets. An enhanced understanding of these herbivore‐associated microbial symbionts is essential for understanding the biology and ecology of the host insect, and may offer new possibilities to improve integrated pest‐management strategies for efficient control of fruit borers. © 2019 Society of Chemical Industry
Next-generation sequencing (NGS)-based bulked-segregant analysis (BSA) approaches have been proven successful for rapidly mapping genes in plant species. However, most such methods are based on mutants and usually only one gene controlling the mutant phenotype is identified. In this study, NGS-based BSA was employed to map simultaneously two qualitative genes controlling cotyledon color of seed in soybean. Yellow-cotyledon (YC) and green-cotyledon (GC) bulks from progenies of a biparental population (Zhonghuang 30 × Jiyu 102) were sequenced. The SNP-index of each SNP locus in YC and GC bulks was calculated and two genomic regions on chromosomes 1 and 11 harboring, respectively, loci qCC1 and qCC2 were identified by (SNP-index) analysis. These two BSA-seq-derived loci were further validated with SSR markers and fine-mapped. qCC1 was mapped to a 30.7-kb region containing four annotated genes and qCC2 was mapped to a 67.7-kb region with nine genes. These two regions contained, respectively, genes D1 and D2, which had previously been identified by homology-based cloning as being associated with cotyledon color. Sequence analysis of the NGS data also identified a frameshift deletion in the coding region of D1. These results suggested that BSA-seq could accelerate the mapping of loci controlling qualitative traits, even if a trait is controlled by more than one locus.
Grapholita molesta , the oriental fruit moth, is a serious global pest of many Rosaceae fruit trees. Gut microorganisms play important roles in host nutrition, digestion, detoxification, and resistance to pathogens. However, there are few studies on the microbiota of G. molesta , particularly during metamorphosis. Here, the diversity of gut microbiota across the holometabolous life cycle of G. molesta was investigated comprehensively by Illumina high-throughput sequencing technology. The results showed that the microbiota associated with eggs had a high number of operational taxonomic units (OTUs). OTU and species richness in early-instar larvae (first and second instars) were significantly higher than those in late-instar larvae (third to fifth instars). Species richness increased again in male pupae and adults, apparently during the process of metamorphosis, compared to late-instar larvae. Proteobacteria and Firmicutes were the dominant phyla in the gut and underwent notable changes during metamorphosis. At the genus level, gut microbial community shifts from Gluconobacter and Pantoea in early-instar larvae to Enterococcus and Enterobacter in late-instar larvae and to Serratia in pupae were apparent, in concert with host developmental changes. Principal coordinate analysis (PCoA) and linear discriminant analysis effect size (LEfSe) analyses confirmed the differences in the structure of gut microbiota across different developmental stages. In addition, sex-dependent bacterial community differences were observed. Microbial interaction network analysis showed different correlations among intestinal microbes at each developmental stage of G. molesta , which may result from the different abundance and diversity of gut microbiota at different life stages. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that most functional prediction categories of gut microbiota were related to membrane transport, carbohydrate and amino acid metabolism, and DNA replication and repair. Bacteria isolated by conventional culture-dependent methods belonged to Proteobacteria, Firmicutes, and Actinobacteria, which was consistent with high-throughput sequencing results. In conclusion, exploration of gut bacterial community composition in the gut of G. molesta should shed light into deeper understanding about the intricate associations between microbiota and host and might provide clues to the development of novel pest management strategies against fruit borers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.