Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions.
Highlights d Basal foot proteins are organized into three main spatially distinct regions d The scaffolding and microtubule-anchoring regions are connected by NIN and CNTRL d NIN has a looping distribution and contributes to CNTRL primary cilia localization d BioID and super-resolution imaging identifies CEP112 as a basal foot protein
Airway clearance of pathogens and particulates relies on motile cilia. Impaired cilia motility can lead to reduction in lung function, lung transplant, or death in some cases. More than 50 proteins regulating cilia motility are linked to primary ciliary dyskinesia (PCD), a heterogeneous, mainly recessive genetic lung disease. Accurate PCD molecular diagnosis is essential for identifying therapeutic targets and for initiating therapies that can stabilize lung function, thereby reducing socioeconomic impact of the disease. To date, PCD diagnosis has mainly relied on nonquantitative methods that have limited sensitivity or require a priori knowledge of the genes involved. Here, we developed a quantitative super-resolution microscopy workflow: (i) to increase sensitivity and throughput, (ii) to detect structural defects in PCD patients’ cells, and (iii) to quantify motility defects caused by yet to be found PCD genes. Toward these goals, we built a localization map of PCD proteins by three-dimensional structured illumination microscopy and implemented quantitative image analysis and machine learning to detect protein mislocalization, we analyzed axonemal structure by stochastic optical reconstruction microscopy, and we developed a high-throughput method for detecting motile cilia uncoordination by rotational polarity. Together, our data show that super-resolution methods are powerful tools for improving diagnosis of motile ciliopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.