Prussian blue nanoparticles (PBNPs) with favorable biocompatibility and unique properties have captured the attention of extensive biomedical researchers. A great progress is made in the application of PBNPs as therapy and diagnostics agents in biomedicine. This review begins with the recent synthetic strategies of PBNPs and the regulatory approaches for their size, shape, and uniformity. Then, according to the different properties of PBNPs, their application in biomedicine is summarized in detail. With modifiable features, PBNPs can be used as drug carriers to improve the therapeutic efficacy. Moreover, the exchangeable protons and adsorbability enable PBNPs to decontaminate the radioactive ions from the body. For biomedical imaging, photoacoustic and magnetic resonance imaging based on PBNPs are summarized, as well as the strategies to improve the diagnostic effectiveness. The applications related to the photothermal effects and nanoenzyme activities of PBNPs are described. The challenges and critical factors for the clinical translation of PBNPs as multifunctional theranostic agents are also discussed. Finally, the future prospects for the application of PBNPs are considered. The aim of this review is to provide a better understanding and key consideration for rational design of this increasingly important new paradigm of PBNPs as theranostics.
Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason underlying difficulties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive “liquid biopsy” from the blood has been attempted to characterize tumor heterogeneity. This review focuses on cell-free circulating tumor DNA (ctDNA) in the bloodstream as a versatile biomarker. ctDNA analysis is an evolving field with many new methods being developed and optimized to be able to successfully extract and analyze ctDNA, which has vast clinical applications. ctDNA has the potential to accurately genotype the tumor and identify personalized genetic and epigenetic alterations of the entire tumor. In addition, ctDNA has the potential to accurately monitor tumor burden and treatment response, while also being able to monitor minimal residual disease, reducing the need for harmful adjuvant chemotherapy and allowing more rapid detection of relapse. There are still many challenges that need to be overcome prior to this biomarker getting wide adoption in the clinical world, including optimization, standardization, and large multicenter trials.
Abstract:In the past decades, much attention has been paid to toxicity assessment of nanoparticles prior to clinical and biological applications. While in vitro studies have been increasing constantly, in vivo studies of nanoparticles have not established a unified system until now. Predictive models and validated standard methods are imperative. This review summarizes the current progress in approaches assessing nanotoxicity in main systems, including the hepatic and renal, gastrointestinal, pulmonary, cardiovascular, nervous, and immune systems. Histopathological studies and specific functional examinations in each system are elucidated. Related injury mechanisms are also discussed.
Ferumoxytol, which is originally intended for MRI and anemia treatment, is currently the only inorganic nanodrug approved by FDA for clinical application in vivo. Common ferumoxytol seems incapable of meeting the requirements for diverse applications. Thus, the development of a novel strategy based on co-precipitation to produce ferumoxytol with high quality is an imminent task. Herein, we proposed a physically assisted strategy, namely hydrocooling and magnetically internal heating co-precipitation, to optimize the properties of ferumoxytol and thus significantly enhance its magnetic performance. Magnetization of the newly developed ferumoxytol can reach 104-105 emu g-1 Fe, which is the highest value among the reported results. It has been found that the crystalline structures of the newly developed ferumoxytol have been greatly improved on the basis of pharmaceutical quality criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.