The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the first point of contact for the virus to recognize and bind to host receptors, is the focus of biomedical research seeking to effectively prevent and treat coronavirus disease (COVID-19). The mass production of spike glycoproteins is usually carried out in different cell systems. Studies have been shown that different expression cell systems alter protein glycosylation of hemagglutinin and neuraminidase in the influenza virus. However, it is not clear whether the cellular system affects the spike protein glycosylation. In this work, we investigated the effect of an expression system on the glycosylation of the spike glycoprotein and its receptor-binding domain. We found that there are significant differences in the glycosylation and glycans attached at each glycosite of the spike glycoprotein obtained from different expression cells. Since glycosylation at the binding site and adjacent amino acids affects the interaction between the spike glycoprotein and the host cell receptor, we recognize that caution should be taken when selecting an expression system to develop inhibitors, antibodies, and vaccines.
It is urgently needed to find reliable biofluid biomarkers for early diagnosis of Parkinson's disease in order to achieve better treatment. Promising biomarkers can be found in Parkinson's disease-related glycoproteins as aberrant protein glycosylation plays an important role in disease progression. However, current information on serum N-glycoproteomic changes in Parkinson's disease is still limited. Here, we used glycoproteomics methods, which combine the solid-phase chemoenzymatic method, lectin affinity chromatography, and hydrophilic interaction chromatography with high-resolution mass spectrometry, to analyze the glycans, glycosites, and intact glycopeptides of serum. Increased abundance of glycans containing core fucose, sialic acid, and bisecting N-acetyl glucosamine was detected at the overall glycan level and also at specific glycosites of glycopeptides. Five Parkinson's disease-associated proteins with this type of N-glycosylation changes were also identified. We propose that the revealed site-specific N-glycosylation changes in serum can be potential biomarkers for Parkinson's disease.
Aberrant glycosylation is a hallmark of cancer found during tumorigenesis and tumor progression. Lung cancer (LC) induced by oncogene mutations has been detected in the patient’s saliva, and saliva glycosylation has been altered. Saliva contains highly glycosylated glycoproteins, the characteristics of which may be related to various diseases. Therefore, elucidating cancer-specific glycosylation in the saliva of healthy, non-cancer, and cancer patients can reveal whether tumor glycosylation has unique characteristics for early diagnosis. In this work, we used a solid-phase chemoenzymatic method to study the glycosylation of saliva glycoproteins in clinical specimens. The results showed that the α1,6-core fucosylation of glycoproteins was increased in cancer patients, whereas α1,2 or α1,3 fucosylation was significantly increased. We further analyzed the expression of fucosyltransferases responsible for α1,2, α1,3, and α1,6 fucosylation. The fucosylation of the saliva of cancer patients is drastically different from that of non-cancer or health controls. These results indicate that the glycoform of saliva fucosylation distinguishes LC from other diseases, and this feature has the potential to diagnose lung adenocarcinoma.
In this study, we investigated the effect of radiofrequency ablation (RFA) combined chemotherapy on middle and late period non-small cell lung cancer (NSCLC). In total, 85 cases of middle and late period NSCLC patients were selected, and were randomly divided into the RFA combined chemotherapy group, RFA treatment group and chemotherapy group. After treatment, the three groups were followed up for computed tomography (CT) scan, and were analyzed for the effect of RFA combined chemotherapy on middle and late period NSCLC. It was found that CT value of RFA combined chemotherapy group decreased significantly compared to before surgery (P<0.05). The CT value of the RFA group decreased significantly compared to before surgery (P<0.05). The CT value of chemotherapy group was not significantly changed compared to before surgery (P>0.05). The postoperative CT value of the RFA combined chemotherapy group and RFA group was smaller compared to that of the chemotherapy group (P<0.05). Effective rate [complete response (CR) + partial response (PR)] of RFA combined chemotherapy group was significantly higher than that of the EFA and chemotherapy groups (P<0.05). Effective rate (CR+PR) of the RFA group was significantly higher than that of the chemotherapy group (P<0.05). By contrast, the progressive rate (P) of RFA combined chemotherapy group was significantly lower than that of the RFA and chemotherapy groups (P<0.05). In conclusion, RFA combined chemotherapy has obvious effect on middle and late period NSCLC, and is safe and feasible.
Abstract. Obesity is one of the leading causes of numerous types of cancer. The present study investigated the impact of a high-fat diet on 1,2-dimethylhydrazine (DMH)-induced colorectal cancer (CRC) in F344 rats. A total of 16 male F344 rats aged 4 weeks were randomly divided into two groups (8 rats/group). Rats in group A were fed a basal diet with a moderate fat (MF) content, while rats in group B were fed a high-fat diet. Upon reaching 5 weeks of age, the rats were injected subcutaneously with DMH (20 mg/kg body weight). DMH was administered once a week for 8 consecutive weeks. All the rats were sacrificed 34 weeks after the first DMH injection and dissected to obtain samples of colorectal tissues. The tissues were examined under a microscope for the presence of aberrant crypt foci (ACFs) and subjected to histopathological analysis. The results showed that at the end of the 34-week experiment, body weights and visceral fat levels were significantly higher in the high-fat diet group compared to the basal diet group. In addition, the incidences of colorectal ACF, adenoma and adenocarcinoma were markedly elevated in the high-fat diet group compared to the basal diet group. These results indicate that the consumption of a high-fat diet promotes the development and progression of CRC and the control of fat intake may prevent CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.