Molybdate-based inorganic-organic hybrid disks with a highly ordered layered structure were synthesized via an acid-base reaction of white molybdic acid (MoO 3 $H 2 O) with n-octylamine (C 8 H 17 NH 2 ) in ethanol at room temperature. The thermal treatment of the as-obtained molybdatebased inorganic-organic hybrid disks at 550 C in air led to formation of orthorhombic a-MoO 3 nanoplates. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal analysis (TG-DTA), Fourier-transform infrared (FT-IR) spectra, Raman spectra, and a laser-diffraction grain-size analyzer were used to characterize the starting materials, the intermediate hybrid precursors and the final a-MoO 3 nanoplates. The XRD, FT-IR and TG-DTA results suggested that the molybdate-based inorganic-organic hybrid compound, with a possible composition of (C 8 H 17 NH 3 ) 2 MoO 4 , was of a highly ordered lamellar structure with an interlayer distance of 2.306(1) nm, and the n-alkyl chains in the interlayer places took a double-layer arrangement with a tilt angle of 51 against the inorganic MoO 6 octahedra layers. The SEM images indicated that the molybdate-based inorganic-organic hybrids took on a well-dispersed disk-like morphology, which differed distinctly from the severely aggregated morphology of their starting MoO 3 $H 2 O powders. During the calcining process, the disk-like morphology of the hybrid compounds was well inherited into the orthorhombic a-MoO 3 nanocrystals, showing a definite plate-like shape. The a-MoO 3 nanoplates obtained were of a single-crystalline structure, with a side-length of 1-2 mm and a thickness of several nanometres, along a thickness direction of [010]. The above a-MoO 3 nanoplates were of a loose aggregating texture and high dispersibility. The chemical sensors derived from the as-obtained a-MoO 3 nanoplates showed an enhanced and selective gas-sensing performance towards ethanol vapors. The a-MoO 3 nanoplate sensors reached a high sensitivity of 44-58 for an 800 ppm ethanol vapor operating at 260-400 C, and their response times were less than 15 s.
Monoterpenes present in the essential oils exhibit anti-inflammatory properties. In this study, we investigated the preventive effect of alpha-pinene (AP), a monoterpene, against isoproterenol (ISO)-induced myocardial infarction and inflammation in Wistar rats. Male Wistar rats were pretreated with AP (50 mg/kg body weight (bw)) administration for 21 days and ISO (85 mg/kg bw) was administered subcutaneously for last two consecutive days (20th day and 21st day). We noticed that there was an increased activity of cardiac marker enzymes in ISO-treated rats. We also observed that elevated levels of lipid peroxidative indices decreased activities of antioxidant status in plasma, erythrocyte, and heart tissue in ISO-induced rats. Furthermore, ISO-treated rats showed an increase in the levels of inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum. Besides, we confirmed the upregulated expression of TNF-α, IL-6, and nuclear factor kappa-light-chain-enhancer of activated B cells in ISO-induced rat heart tissue. Conversely, we found that AP pretreatment significantly decreased levels of cardiac markers like serum cardiac troponin T and cardiac troponin I, lipid peroxidative markers, and restored antioxidants status in ISO-treated rats. Besides, AP administration attenuated ISO-induced inflammatory marker expression. The present findings demonstrated that AP significantly protects the myocardium and exerts cardioprotective and anti-inflammatory effects in experimental rats.
Background: Many efforts have been made to investigate the role played by cytokines in the development of hypertension. But few reports exist on the association between cytokines and hypertensive renal damage. This study was to observe the changes of the serum levels of cytokines, tumor necrosis factor alpha (TNF-a), and interleukin 6 (IL-6) in patients with hypertensive renal damage, whereby to study the correlation of TNF-a and IL-6 with the hypertensive renal damage. Methods: According to their urinary albumin excretion rate (UAER), 102 patients with essential hypertension were divided into three groups: normoalbuminuria hypertensive group (n = 37), microalbuminuria hypertensive group (n = 36), and proteinuric hypertensive group (n = 29). Serum TNF-a and IL-6 of all subjects were measured with radioimmune assay. Thirty age-and gendermatched normotensive persons were selected as normotensive control group. Results: Serum levels of TNF-a and IL-6 were significantly higher in patients with essential hypertension than those in normotensive control group (p < 0.5). Serum levels of TNF-a and IL-6 increased in proportion to UAER. The statistical significance was present among groups (p < 0.05). Both TNF-a and IL-6 were found to have a positive correlation with UAER (r = 0.79, p < 0.01; r = 0.75, p < 0.01), but not with the levels of blood pressure (BP). Conclusions: TNF-a and IL-6 are remarkably increased in hypertensive patients and may play an important role in the pathogenesis and the development of hypertensive renal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.