The effect of different In contents on the melting characteristics, mechanical properties, and microstructure of 12Ag–Cu–Zn–Sn filler metal was investigated in this paper, and flame brazing of 304 stainless steel and copper plates was done using the 12Ag–Cu–Zn–Sn–xIn filler metal. The results indicate that adding appropriate amount of In can evidently decrease the solidus and liquidus temperatures and improve the wettability of the low silver based filler metals. In addition, the shear strength of 304 stainless steel and copper plates joint brazed by 12Ag–Cu–Zn–Sn–1In are satisfactory due to the solution strength effect, and scanning electron microscopy examination of the braze-zone revealed that more relatively sound joints were obtained when brazing was done with 12Ag–Cu–Zn–Sn–xIn filler metal than with Indium free one; its performance is comparable to that of the joint brazed with the 20Ag–Cu–Zn–Sn filler metal, having a remarkable silver-saving effect.
In this study, brazing AA6061 to Q235 steel using flame brazing was performed with 70.9 wt.% CsF-0.5 wt.% RbF-28.6 wt.% AlF3 fluxes doped with GaF3, ZnF2, Zn(BF4)2 and Ga2O3 nanoparticles, matched with a Zn-15Al filler metal, and the spreadability of the filler metal and the mechanical properties of brazed joints were investigated at the same time. The results showed suitable amounts of GaF3, ZnF2, Zn(BF4)2 and Ga2O3 doped into the base flux could strengthen the filler metal in wetting and spreading on the surface of aluminum alloy and steel to different degrees. The suitable ranges of GaF3, ZnF2, Zn(BF4)2 and Ga2O3, respectively, were 0.0075–0.01 wt.%, 0.0075–0.01 wt.%, 0.0075–0.01 wt.% and 0.009–0.01 wt.%, and the maximum spreading area was obtained via doping with GaF3. The shear strength of brazed joints reached the peak at 126 MPa when 0.075 wt.% GaF3 was added. Comparative tests proved that the activity of the CsF-RbF-AlF3 flux doped with GaF3 was the best. The reason was that the CsF-RbF-AlF3-GaF3 flux was competent in removing oxides of the base metal and decreasing the interfacial tension, in virtue of the activity of Ga3+ as well as F−.
The effect of trace amounts of GaF3 and Ga2O3 nanoparticles on the wettability and spreadability of CsF-AlF3 flux matched Zn-15Al filler metal were comparatively studied on 6061 aluminum alloy and Q235 low-carbon steel. The experimental results indicate that appropriate amounts of GaF3 and Ga2O3 added into the flux could significantly promote the Zn-15Al filler metal to wet and spread on the surface of 6061 aluminum alloy and Q235 low-carbon steel. The optimum ranges for GaF3 and Ga2O3 were 0.0075–0.01wt.% and 0.009–0.01 wt.%, respectively. Comparative analysis showed that the activity of CsF-AlF3 flux bearing GaF3 was higher than that bearing Ga2O3. The reason for this is that the former flux has a stronger ability to remove oxides of the base metal and reduce the interfacial tension of the molten filler metal and the base metal.
In this study, a Ga 2 O 3 nano-particle was added into CsF-RbF-AlF 3 flux to develop a highly active flux for brazing aluminum alloy to steel, and the spreadability and wettability of Zn-Al filler metal that matched the CsF-RbF-AlF 3 flux-doped Ga 2 O 3 nano-particle on the steel were investigated. The results showed that the spreadability and wettability of the CsF-RbF-AlF 3 flux-doped Ga 2 O 3 nano-particle could be remarkably improved when matching Zn-Al filler metals on both aluminum and low-carbon steel, for which the optimal content is in the range of 0.001-0.003 wt.% of Ga 2 O 3 . An investigation and analysis on the mechanism of reactions among CsF-RbF-AlF 3 -doped Ga 2 O 3 nano-particle flux and filler metal or base metals showed that the Ga 2 O 3 nano-particle is selectively absorbed by the interface of molten Zn-2Al filler metal and base metal, which released the surface-active element Ga to enrich the molten Zn-2Al filler metal and decreased the interfacial tension, so as to promote the enlargement of its spreading area during the brazing process. It was concluded that adding a trace amount of Ga 2 O 3 nano-particle into CsF-RbF-AlF 3 flux is a meaningful way to improve the activity of flux for brazing aluminum to steel compared with adding ZnCl 2 , which poses the risk of corrosion on aluminum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.