The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus.
Human antibodies elicited in response to hepatitis C virus (HCV) infection are anticipated to react with the native conformation of the viral envelope structure. Isolation of these antibodies as human monoclonal antibodies that block virus binding and entry will be useful in providing potential therapeutic reagents and for vaccine development. H-111, an antibody to HCV envelope 1 protein (E1) that maps to the YEVRNVSGVYH sequence and is located near the N terminus of E1 and is able to immunoprecipitate E1E2 heterodimers, is described. Binding of H-111 to HCV E1 genotypes 1a, 1b, 2b, and 3a indicates that the H-111 epitope is highly conserved. Sequence analysis of antibody V regions showed evidence of somatic and affinity maturation of H-111. Finally, H-111 blocks HCV-like particle binding to and HCV virion infection of target cells, suggesting the involvement of this epitope in virus binding and entry.
SUMMARY Previous efforts to identify cross-neutralizing antibodies to the receptor binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS, cross-neutralizes Ebola (EBOV), Sudan (SUDV), and to a lesser extent Bundibugyo viruses, and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™, is remarkably effective against EBOV (Zaire), but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.
Effective immunization against hepatitis C virus (HCV) infections is likely to require the induction of both robust T and B cell immunity. Although neutralizing antibodies may play an important role in control of infection, there is little understanding of the structure of the HCV envelope glycoproteins and how they interact with such antibodies. An additional challenge for vaccine design is the genetic diversity of HCV and the rapid evolution of viral quasispecies that escape antibody-mediated neutralization. We used a cell culture-infectious, chimeric HCV with the structural proteins of genotype 1a virus to identify envelope residues contributing to the epitope recognized by a broadly neutralizing, murine monoclonal antibody, AP33. By repetitive rounds of neutralization followed by amplification, we selected a population of viral escape mutants that resist stringent neutralization with AP33 and no longer bind the antibody. Two amino acid substitutions, widely separated in the linear sequence of the E2 envelope protein (N415Y and E655G), were identified by sequencing of cloned cDNA and shown by reverse genetics analysis to contribute jointly to the AP33 resistance phenotype. The N415Y mutation substantially lowered virus fitness, most likely because of a defect in viral entry, but did not reduce binding of soluble CD81 to immobilized HCV-pseudotyped retrovirus particles. The in vitro selection of an HCV escape mutant recapitulates the ongoing evolution of antigenic variants that contributes to viral persistence in humans and reveals information concerning the conformational structure of the AP33 epitope, its role in viral replication, and constraints on its molecular evolution.antibody ͉ immunity ͉ vaccine ͉ viral envelope
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.