Electric control of exchange bias (EB) is of vital importance in energy-efficient spintronics. Although many attempts have been made during the past decade, each has its own limitations for operation and thus falls short of full direct and reversible electrical control of EB at room temperature. Here, a novel approach is proposed by virtue of unipolar resistive switching to accomplish this task in a Si/SiO /Pt/Co/NiO/Pt device. By applying certain voltages, the device displays obvious EB in the high-resistance-state while negligible EB in the low-resistance state. Conductive filaments forming in the NiO layer and rupturing near the Co-NiO interface are considered to play dominant roles in determining the combined resistive switching and EB phenomena. This work paves a new way for designing multifunctional and nonvolatile magnetoelectric random access memory devices.
In this paper, we propose a non-invasive imaging method of microwave near field using a diamond containing nitrogen-vacancy centers. We applied synchronous pulsed sequence combined with charge coupled device camera to measure the amplitude of the microwave magnetic field. A full reconstruction formulation of the local field vector, including the amplitude and phase, is developed by measuring both left and right circular polarizations along the four nitrogen-vacancy axes. Compared to the raster scanning approach, the two dimensional imaging method is promising for application to circuit failure analysis. A diamond film with micrometer thinness enables high-resolution near field imaging. The proposed method is expected to have applications in monolithic-microwave-integrated circuit chip local diagnosis, antenna characterization, and field mode imaging of microwave cavities and waveguides.
We present a microwave B-field scanning imaging technique using diamond microcrystal containing nitrogen vacancy center that is attached to a fiber tip. We propose a pulsed modulation technique, enabling the implementation of a variety of pulsed quantum algorithm for state manipulation and fast readout of spin state. A detailed mapping of the magnetic B-field distribution of a helical antenna with sub-100 micron resolution is presented and compared with numerical simulations. This fiber based microwave B-field probe has the advantage of minimized invasiveness, small overall size, will boost broad interest in a variety of applications where near field distribution is essential to device characterization, to name a few, antenna radiation profiling, monolithic microwave integrated circuits failure diagnosis, electromagnetic compatibility test of microwave integrated circuits and microwave cavity field mode mapping.
We propose a diamond-based micron-scale sensor and perform high-resolution B-field imaging of the near-field distribution of coplanar waveguides. The sensor consists of diamond crystals attached to the tip of a tapered fiber with a physical size on the order of submicron. The amplitude of the B-field component B is obtained by measuring the Rabi oscillation frequency. The result of Rabi sequence is fitted with a decayed sinusoidal. We apply the modulation-locking technique that demonstrates the vector-resolved field mapping of the micromachine coplanar waveguide structure (CPW). B-field line scan was performed on the CPW with a scan step size of 1.25 μm. To demonstrate vector resolved rf field sensing, a full field line scan acts (was performed) along four NV axes at a height of 50 μm above the device surface. The simulations are compared with the experimental results by vector-resolved measurement. This technique allows the measurement of weak microwave signals with a minimum resolvable modulation depth of 20 ppm. The sensor will have great interest in micron-scale resolved microwave B-field measurements, such as electromagnetic compatibility testing of microwave integrated circuits and characterization of integrated microwave components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.