Electric control of exchange bias (EB) is of vital importance in energy-efficient spintronics. Although many attempts have been made during the past decade, each has its own limitations for operation and thus falls short of full direct and reversible electrical control of EB at room temperature. Here, a novel approach is proposed by virtue of unipolar resistive switching to accomplish this task in a Si/SiO /Pt/Co/NiO/Pt device. By applying certain voltages, the device displays obvious EB in the high-resistance-state while negligible EB in the low-resistance state. Conductive filaments forming in the NiO layer and rupturing near the Co-NiO interface are considered to play dominant roles in determining the combined resistive switching and EB phenomena. This work paves a new way for designing multifunctional and nonvolatile magnetoelectric random access memory devices.
The resistive switching effect of devices with metal-oxide-metal structure is a fascinating candidate for next generation nonvolatile memory devices. Here, self-assembled NiWO4 nano-nests on a Ti substrate were synthesized by a hydrothermal process. Moreover, a resistive switching memory device with Ag/NiWO4/Ti structure is demonstrated. The device shows an enhanced bipolar resistive switching effect under white-light illumination. This study is useful for exploring multifunctional materials and their applications in light-controlled nonvolatile memory devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.