Introducing local structural heterogeneity can be a feasible way to achieve a high and thermally stable piezoelectric response in lead-free piezoelectrics.
Due to growing concern for the environment and human health, searching for high-performance lead-free piezoceramics has been a hot topic of scientific and industrial research. Despite the significant progress achieved toward enhancing piezoelectricity, further efforts should be devoted to the synergistic improvement of piezoelectricity and its thermal stability. This study provides new insight into these topics. A new KNN-based lead-free ceramic material is presented, which features a large piezoelectric coefficient (d33) exceeding 500 pC/N and a high Curie temperature (Tc) of ∼200°C. The superior piezoelectric response strongly relies on the increased composition-induced structural flexibility due to lattice softening and decreased unit cell distortion. In contrast to piezoelectricity anomalies induced via polymorphic transition, this piezoelectricity enhancement is effective within a broad temperature range rather than a specific small range. In particular, a hierarchical domain architecture composed of nano-sized domains along the submicron domains was detected in this material system, which further contributes to the high piezoelectricity.
DANTE prepared MR imaging can significantly improve contrast between the vessel wall and cerebral spinal fluid in major intracranial arteries, holding a good potential to be combined with multicontrast protocol for intracranial wall imaging.
BackgroundMulti-contrast vessel wall cardiovascular magnetic resonance (CMR) has demonstrated its capability for atherosclerotic plaque morphology measurement and component characterization in different vasculatures. However, limited coverage and partial volume effect with conventional two-dimensional (2D) techniques might cause lesion underestimation. The aim of this work is to evaluate the performance in a) blood suppression and b) vessel wall delineation of three-dimensional (3D) multi-contrast joint intra- and extracranial vessel wall imaging at 3T.MethodsThree multi-contrast 3D black blood (BB) sequences with T1, T2 and heavy T1 weighting and a custom designed 36-channel neurovascular coil covering the entire intra- and extracranial vasculature have been used and investigated in this study. Two healthy subjects were recruited for sequence parameter optimization and twenty-five patients were consecutively scanned for image quality and blood suppression assessment. Qualitative image scores of vessel wall delineation as well as quantitative Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) were evaluated at five typical locations ranging from common carotid arteries to middle cerebral arteries.ResultsThe 3D multi-contrast images acquired within 15mins allowed the vessel wall visualization with 0.8 mm isotropic spatial resolution covering intra- and extracranial segments. Quantitative wall and lumen SNR measurements for each sequence showed effective blood suppression at all selected locations (P < 0.0001). Although the wall-lumen CNR varied across measured locations, each sequence provided good or adequate image quality in both intra- and extracranial segments.ConclusionsThe proposed 3D multi-contrast vessel wall technique provides isotropic resolution and time efficient solution for joint intra- and extracranial vessel wall CMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.