Plasmonic metasurfaces have been widely used in biosensing to improve the interaction between light and biomolecules through the effects of near-field confinement. When paired with biofunctionalization, plasmonic metasurface sensing is considered as a viable strategy for improving biomarker detection technologies. In this review, we enumerate the fundamental mechanism of plasmonic metasurfaces sensing and present their detection in human tumors and COVID-19. The advantages of rapid sampling, streamlined processes, high sensitivity, and easy accessibility are highlighted compared with traditional detection techniques. This review is looking forward to assisting scientists in advancing research and developing a new generation of multifunctional biosensors.
In this experiment, Al-Cu-Sn alloy was used as raw material to form deposits with different heat input using the wire-arc additive manufacturing (WAAM) process. The effects of heat input on microstructure and mechanical properties of Al-Cu-Sn alloy deposits were investigated by metallography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) and mechanical properties tests. The results show that with increased of heat input, the thickness of the deposits increased and the layer height of the deposits increased. The number and size of pores in the deposits also improved with the increased heat input. The grain size of the deposits in the as-deposited state gradually increased and changed from isometric crystals to columnar crystals, the precipitated θ phases gradually converged on the grain boundary from within the grains. After T6 heat treatment, with increased heat input, the number of unsolved θ phases on the grain boundary increased, and the number of θ phases precipitated out of the matrix decreased as the phase spacing increased. With the increased heat input, the mechanical properties of the deposits gradually decreased, and the fracture mode changed from ductile fracture to brittle fracture.
In order to improve the forming efficiency of Al–7Si–0.6Mg fabricated by wire and arc additive manufacturing process (WAAM), wire with a diameter of 1.6 mm was selected as the raw material. The effect of heat input on the formability, microstructure, and properties of the WAAM alloy was investigated, and the forming model was established. The WAAM alloys were characterized by electronic universal testing, scanning electron microscopy, energy spectrum analysis, and metallographic microscopy. The results show that Al–7Si–0.6Mg alloy has a large processing window under the cold metal transfer (CMT) process, and it can be well formed with a large range of heat input. The secondary dendrite arm spacing and Fe-phase in the as-deposited alloy gradually increase with an increase in heat input, and slight overburning occurs in the heat affected zone at higher heat inputs. After solid solution and aging treatment (T6 heat treatment), the size of α-Al grain and eutectic silicon grain increases with the increase of heat input. Little anisotropy in the mechanical properties is observed except at higher heat inputs. The tensile strength is 354.5 MPa ± 7.5 MPa, yield strength is 310 MPa ± 5.5 MPa, and elongation is 6.3 ± 0.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.