A parallel-flow exhaust hood is an effective ventilation device to control dust and toxic pollutants and protect the occupational health of workers, whether it is used alone or combined with a uniform air supply hood in a push–pull ventilation system. Some scholars have studied the outside air flow characteristics of the conventional exhaust hood with non-uniform air speed at the hood face, but the law of velocity variation outside the parallel-flow exhaust hood is not clear at present. Therefore, this paper uses the dimensionless method to study the center-line velocity change regime in a parallel-flow square exhaust hood based on simulation and experimental data. The results show that the dimensionless center-line velocity has a good change law with the characteristic length of exhaust hood in a parallel-flow square exhaust hood, which can eliminate the influence of hood face velocity and the hood size on the velocity change regime; and the experimental data is basically consistent with the calculated data, which shows that the regression equation method is reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.