The freshwater flux from icebergs into the Southern Ocean plays an important role in the global climate through its impact on the deep-water formation. Large uncertainties exist in the ice volume transported by Southern Ocean icebergs due to the sparse spatial and temporal coverage of observations, especially observations of ice thickness. The iceberg freeboard is a critical geometric parameter for measuring the thickness of an iceberg and then estimating its volume. This study developed a new, highly efficient shadow-height method to precisely measure the freeboard of various icebergs surrounded by sea ice using Landsat-8 Operational Land Imager 15-m bi-temporal panchromatic image shadows at low-solar-elevation angles. We evaluated and validated shadow length precision according to bi-temporal measurements and comparison with the measurements from the unmanned aerial vehicle. We determined freeboard precision according to shadow length precision and solar elevation angle. In our case study area, 4832 available freeboard measuring points with shadow length precision better than 2 pixels covered 376 icebergs with sizes ranging from 0.002 to 0.7 km² and with freeboard ranging from 2.3 to 83.4 m. At the solar elevation angles of 5.2°, the freeboard precision of 64.1% data could reach 1 m and 86.9% could reach 2 m. Our proposed method effectively filled in the data gap of existing freeboard measurement methods.
<p><strong>Abstract:</strong>&#160;The iceberg freeboard is an important geometric parameter for measuring the thickness of the iceberg and then estimating its volume. Based on the fact that the iceberg can cast elongated shadow on the surface of sea ice in winter, this paper proposes a method to measure the iceberg freeboard using shadow length and the predefined or estimated solar elevation angle. Three Landsat-8 panchromatic images are selected to test our method, with center solar elevation angle of respectively 5.43&#176;, 7.49&#176;and 11.01&#176; on August 29, September 7, and 16 September in 2016. Shadow lengths of five isolated tabular icebergs are automatically extracted to calculate the freeboard height. For the accuracy assessment, we use the matching&#160;points at the different time as cross validation. The results show that the measurement error of shadow length is less than one pixel. When the sun elevation angle is lower than 11.01&#176;, the Root Mean Square Error (RMSE) of the iceberg freeboard from the panchromatic 15 m image is less than 2.0 m, and the Mean Absolute Error (MAE) is less than 1.5 m. Such experiment shows that: under the angle of low solar elevation in winter, the landsat-8 panchromatic 15 m image can be used for high-precision measurement of the iceberg freeboard, and has the potential to measure the Antarctic iceberg freeboard in large scale.</p><p><strong>Key </strong><strong>words:</strong>&#160;Antarctic, icebergs, freeboard, shadow altimetry, Landsat-8</p><p>&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.