Recent studies have suggested that long non-coding RNAs (lncRNAs) can interact with microRNAs (miRNAs) and indirectly regulate miRNA targets though competing interactions. However, the molecular mechanisms underlying these interactions are still largely unknown. In this study, these lncRNA–miRNA–gene interactions were defined as lncRNA-associated competing triplets (LncACTs), and an integrated pipeline was developed to identify lncACTs that are active in cancer. Competing lncRNAs had sponge features distinct from non-competing lncRNAs. In the lncACT cross-talk network, disease-associated lncRNAs, miRNAs and coding-genes showed specific topological patterns indicative of their competence and control of communication within the network. The construction of global competing activity profiles revealed that lncACTs had high activity specific to cancers. Analyses of clustered lncACTs revealed that they were enriched in various cancer-related biological processes. Based on the global cross-talk network and cluster analyses, nine cancer-specific sub-networks were constructed. H19- and BRCA1/2-associated lncACTs were able to discriminate between two groups of patients with different clinical outcomes. Disease-associated lncACTs also showed variable competing patterns across normal and cancer patient samples. In summary, this study uncovered and systematically characterized global properties of human lncACTs that may have prognostic value for predicting clinical outcome in cancer patients.
First two decades of the twenty-first century are characterised by epidemics of non-communicable diseases such as many hundreds of millions of patients diagnosed with cardiovascular diseases and the type 2 diabetes mellitus, breast, lung, liver and prostate malignancies, neurological, sleep, mood and eye disorders, amongst others. Consequent socio-economic burden is tremendous. Unprecedented decrease in age of maladaptive individuals has been reported. The absolute majority of expanding non-communicable disorders carry a chronic character, over a couple of years progressing from reversible suboptimal health conditions to irreversible severe pathologies and cascading collateral complications. The time-frame between onset of SHS and clinical manifestation of associated disorders is the operational area for an application of reliable risk assessment tools and predictive diagnostics followed by the cost-effective targeted prevention and treatments tailored to the person.This article demonstrates advanced strategies in bio/medical sciences and healthcare focused on suboptimal health conditions in the frame-work of Predictive, Preventive and Personalised Medicine (3PM/PPPM). Potential benefits in healthcare systems and for society at large include but are not restricted to an improved life-quality of major populations and socio-economical groups, advanced professionalism of healthcare-givers and sustainable healthcare economy. Amongst others, following medical areas are proposed to strongly benefit from PPPM strategies applied to the identification and treatment of suboptimal health conditions: Stress overload associated pathologies Male and female health Planned pregnancies Periodontal health Eye disorders Inflammatory disorders, wound healing and pain management with associated complications Metabolic disorders and suboptimal body weight Cardiovascular pathologies Cancers Stroke, particularly of unknown aetiology and in young individuals Sleep medicine Sports medicine Improved individual outcomes under pandemic conditions such as COVID-19.
Genetic factors play a major role in the etiology of epilepsy disorders. Recent genomics studies using next generation sequencing (NGS) technique have identified a large number of genetic variants including copy number (CNV) and single nucleotide variant (SNV) in a small set of genes from individuals with epilepsy. These discoveries have contributed significantly to evaluate the etiology of epilepsy in clinic and lay the foundation to develop molecular specific treatment. However, the molecular basis for a majority of epilepsy patients remains elusive, and furthermore, most of these studies have been conducted in Caucasian children. Here we conducted a targeted exome-sequencing of 63 trios of Chinese epilepsy families using a custom-designed NGS panel that covers 412 known and candidate genes for epilepsy. We identified pathogenic and likely pathogenic variants in 15 of 63 (23.8%) families in known epilepsy genes including SCN1A, CDKL5, STXBP1, CHD2, SCN3A, SCN9A, TSC2, MBD5, POLG and EFHC1. More importantly, we identified likely pathologic variants in several novel candidate genes such as GABRE, MYH1, and CLCN6. Our results provide the evidence supporting the application of custom-designed NGS panel in clinic and indicate a conserved genetic susceptibility for epilepsy between Chinese and Caucasian children.
The limited efficacy of current treatment methods and increased type 2 diabetes mellitus (T2DM) incidence constitute an incentive for investigating how metabolic homeostasis is maintained, to improve treatment efficacy and identify novel treatment methods. We analyzed a three-generation family of Chinese origin with the common feature of T2DM attacks and fatty pancreas (FP), alongside 19 unrelated patients with FP and 58 cases with T2DM for genetic variations in Enho, serum adropin, and relative Treg amounts. Functional studies with adropin knockout (AdrKO) in C57BL/6J mice were also performed. It showed serum adropin levels were significantly lower in FP and T2DM patients than in healthy subjects; relative Treg amounts were also significantly decreased in FP and T2DM patients, and positively associated with adropin (r=0.7220, P=0.0001). Sequencing revealed that the patients shared a Cys56Trp mutation in Enho. In vivo, adropin-deficiency was associated with increased severity of glucose homeostasis impairment and fat metabolism disorder. AdrKO mice exhibited reduced endothelial nitric oxide synthase (eNOS) phosphorylation (Ser1177), impaired glycosphingolipid biosynthesis, adipocytes infiltrating, and loss of Treg, and developed FP and T2DM. Adropin-deficiency contributed to loss of Treg and the development of FP disease and T2DM.
We have shown previously that the synergistic interaction of acidic fibroblast growth factor (aFGF) and a coactivator (dopamine, protein kinase A, or protein kinase C activator) will induce the novel expression of tyrosine hydroxylase (TH) in neurons of the developing striatum. In this study we sought to determine whether, concomitant with TH expression, there were unique changes in transcription factors binding the AP-1 regulatory element on the TH gene. Indeed, we found a significant recruitment of proteins into TH-AP-1 complexes as well as a shift from low- to high-affinity binding. Supershift experiments further revealed dramatic changes in the proteins comprising the AP-1 complexes, including recruitment of the transcriptional activators c-Fos, a novel Fos protein, Fos-B, and Jun-D. Concomitantly, there was a decrease in repressor-type factors ATF-2 and CREM-1. aFGF appeared to play a central but insufficient role, requiring the further participation of at least one of the coactivating substances. Experiments examining the signal transduction pathway involved in mediating these nuclear events demonstrated that the presence of only an FGF (1, 2, 4, 9) competent to induce TH caused the phosphorylation of mitogen-activated protein kinase (MAPK). Moreover, the treatment of cells with MEK/ERK inhibitors (apigenin or PD98059) eliminated TH expression and the associated AP-1 changes, suggesting that MAPK was a critical mediator of these events. We conclude that, during transdifferentiation, signals may be transmitted via MAPK to the TH-AP-1 site to increase activators and reduce repressors, helping to shift the balance in favor of TH gene expression at this and possibly other important regulatory sites on the gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.