5Catalytic applications of supported palladium nanoparticles (PdNPs) in the liquid phase reactions are of considerable importance. Herein the polystyrene/palladium (PS/Pd) composite particles composed of PS microspheres decorated with PdNPs with different sizes are prepared facilely and effectively based on a thermodynamic effect. Compared with the reported synthetic methods, surface functionalizations or modifications of PS microsphere and PdNPs are not necessary at all. The formation of PS/Pd composite 10 particles has been demonstrated by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Finally, the catalytic performance of asprepared PS/Pd composite particles is investigated during the reduction of p-nitrophenol by sodium borohydride, and noticeably, they have shown a high catalytic activity and a good stability.Herein we develop a facile and effective strategy for the synthesis of composite particles composed of polystyrene microspheres decorated with palladium nanoparticles, which exhibited excellent catalytic activity and stability towards the reduction of p-nitrophenol by NaBH 4 .
Herein an in situ growth of clean palladium nanoparticles (Pd NPs) on functional reduced graphene oxide (RGO)-coated polystyrene (PS) microspheres is achieved by a simple two-step process. On the basis of the hydrophobic interaction and π-electron interaction, the PS/RGO composite particles are first prepared by the reduction of graphene oxide in the presence of PS microspheres. Second, without using any additional reducing agent or stabilizer, the clean Pd NPs grow in situ on the surface of PS/RGO composite particles in water through a spontaneous redox reaction between Pd and RGO. Significantly, owing to the stabilizer-free surface of Pd NPs and the synergistic effect of RGO and Pd NPs, the resultant PS/RGO@Pd composite particles feature pronounced catalytic activity toward the reduction of p-nitrophenol and Suzuki coupling reactions. Moreover, the catalyst particles can be easily recovered by centrifugation because of the large size of support microspheres and recycled consecutively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.