The intrasplenic transplantation of cultured encapsulated hepatocytes improved the survival rate of an acute liver failure rat model induced by a 90% partial hepatectomy.
Encapsulated hepatocyte transplantation is a promising approach to cell transplantation without immunosuppression as an alternative to whole organ liver transplantation. However, the shortage of donor cells for hepatocyte transplantation has not been resolved, and at this critical point, it seems necessary to establish a method of hepatocyte cryopreservation to allow clinical application of hepatocyte transplantation and the development of a bioartificial liver system in the near future. In this study we demonstrated that cryopreserved microencapsulated rat and human hepatocytes can retain their hepatic function and that cryopreserved microencapsulated human hepatocytes transplanted into rat spleen remain viable without immunosuppression. Rat and human hepatocytes were isolated by a collagenase digestion method, and they were microencapsulated with poly-L-lysine. The microencapsulated rat hepatocytes were transferred to culture medium (DMEM containing 10% FBS and 10% DMSO) and immediately frozen in liquid nitrogen. A warm water bath (37 degrees C) was used to thaw the microencapsulated hepatocytes. Hepatic function, drug metabolism, and cell morphology were assessed after 90 days of cryopreservation. After 1 week of cryopreservation, microencapsulated hepatocytes were cultured for up to 2 weeks to assess their hepatic function and morphology. The morphology of human hepatocytes was assessed after 30 days of cryopreservation. Cryopreserved human hepatocytes were transplanted into rat spleen to assess their morphology. Cryopreserved microencapsulated hepatocytes retained their viability and were strongly positive for expression of albumin, OAT2, CYP3A2, and CYP3A9. Two weeks after cultivation, the cryopreserved microencapsulated rat hepatocytes had retained their hepatic function (urea synthesis). Cryopreserved microencapsulated human hepatocytes also mainly survived and retained their hepatic function for at least 30 days after cryopreservation. Moreover, entrapped cryopreserved human hepatocytes also survived and expressed albumin in rat spleen after transplantation. We demonstrated a novel method of long-term cryopreservation of rat and human hepatocytes by using an encapsulation technique, with retention of biological activity and excellent survival of the cryopreserved microencapsulated human hepatocytes transplanted into rat spleen. We believe that this novel approach to hepatocytes cryopreservation provides a new direction in encapsulated cell therapy with the goal of clinical application in the near future.
Our microencapsulation technique protects hepatocytes from cryoinjury. This novel technique could be utilized by hepatocyte banks.
Transplantation of isolated hepatocytes has been proposed to compensate for essential functions lacking in liver failure or for genetic defects that alter a specific liver metabolic pathway. Hepatocyte utilization for these purposes would be facilitated with a reliable, reproducible, and effective method of long-term hepatocyte storage. We have recently developed a simple new system for cryopreservation of hepatocytes that encapsulates alginate microspheres and maintains liver-specific function. The aim of this study was to elucidate the transport and drug-metabolizing enzyme activities of cryopreserved microencapsulated hepatocytes stored for a long time. Morphological examinations showed there is no apparent injury of the hepatocytes during cryopreservation processes. A drug-metabolizing enzyme (testosterone 6β-hydroxylase, a specific probe for CYP3A2) and drug transport activities [salicylate, allopurinol, and prostaglandin E 2 (PGE 2 ), typical substrates of rOat2] in cryopreserved microencapsulated hepatocytes were maintained up to 120 days. Our results thus demonstrate for the first time that cryopreservation of primary rat hepatocytes by the encapsulation technique allows long-term retention of drug metabolism and drug transport activities.
We investigated the feasibility of correcting the congenital absence of albumin in Nagase analbuminemic rats (NARs) by allogeneic bone marrow cell transplantation (BMT). Seven-week-old male NARs were used as recipients, and 6- to 8-week-old male Sprague-Dawley (SD) rats were used as allograft donors. NARs were divided into three groups: a BMT group (n = 10) in which bone marrow cells were infused into the liver; a hepatocyte transplantation (HCT) group (n = 8) in which hepatocytes were transplanted into the liver, and a control group (n = 8) in which PBS was injected into the portal vein. Serum albumin levels were measured as an indicator of the function of the grafted cells, and the phenotypic characteristics of the engrafted cells in the recipient’s liver were assessed with immunohistochemical and immunofluorescence techniques. At 8 weeks after cell transplantation, the serum albumin levels of the BMT group and HCT group were significantly higher than in the control group. The hepatocyte-like cells derived from bone marrow cells expressed albumin in liver of the NARs. According to this result, bone marrow cells can differentiate into hepatocyte-like cells in vivo. The results show that BMT is an effective treatment for congenital analbuminemia in a rat model and suggest that allogeneic BMT can be used as an efficient therapy for hereditary metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.