Summary: A well‐dispersed gold nanoparticle/poly(N‐isopropylacrylamide) (PNIPAm) hydrogel nanocomposite with thermoswitchable electrical properties is prepared by the copolymerization of functional Au nanoparticles with N‐isopropylacrylamide. It is found that the electrical conductivity of the nanocomposite changes by two orders of magnitude at moderate temperature (Ttran) upon temperature stimuli. The change of electrical properties is reversible during a heating and cooling cycle.Schematic illustration of the mechanism of the thermo‐switchable electronic properties of the Au nanoparticle/PNIPAm composite.magnified imageSchematic illustration of the mechanism of the thermo‐switchable electronic properties of the Au nanoparticle/PNIPAm composite.
In this work, we synthesized a composite cathode material containing LiFePO 4 and activated carbon ͑AC͒, which is abbreviated as LAC, by a solid-state reaction, and assembled a hybrid battery-capacitor LAC/Li 4 Ti 5 O 12 . The electrochemical performances of the hybrid battery-capacitor LAC/Li 4 Ti 5 O 12 were characterized by cyclic voltammograms, constant current charge-discharge, rate charge-discharge, and cycle performance testing. The results show the hybrid battery-capacitor LAC/Li 4 Ti 5 O 12 has advantages of the high rate capability of hybrid capacitor AC/Li 4 Ti 5 O 12 and the high capacity of battery LiFePO 4 /Li 4 Ti 5 O 12 . It is also proven that the hybrid battery-capacitor LAC/Li 4 Ti 5 O 12 is an energy storage device where the capacitor and the secondary battery coexist in one cell system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.