ObjectiveThe purpose of this study is to accurately monitor temperature during microwave hyperthermia. We propose a temperature estimation model BP‐Nakagami based on neural network for Nakagami distribution.MethodsIn this work, we designed the microwave hyperthermia experiment of fresh ex vivo pork tissue and phantom, collected ultrasonic backscatter data at different temperatures, modeled these data using Nakagami distribution, and calculated Nakagami distribution parameter m. A neural network model was built to train the relationship between Nakagami distribution parameter m and temperature, and a BP‐Nakagami temperature model with good fitting was obtained. The temperature model is used to draw the two‐dimensional temperature distribution map of biological tissues in microwave hyperthermia. Finally, the temperature estimated by the model is compared with the temperature measured by thermocouples.ResultsThe error between the temperature estimated by the temperature model and the temperature measured by the thermocouple is within 1°C in the range of 25°C–50°C for ex vivo pork tissue, and the error between the temperature estimated by the temperature model and the temperature measured by the thermocouple is within 0.5°C in the range of 25°C–50°C for phantom.ConclusionsThe results show that the temperature estimation model proposed by us is an effective model for monitoring the internal temperature change of biological tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.