A new amdoparvovirus, named raccoon dog and fox amdoparvovirus (RFAV), was identified in farmed sick raccoon dogs and arctic foxes. Phylogenetic analyses showed that RFAV belongs to a new species within the genus Amdoparvovirus of the family Parvoviridae. An RFAV strain was isolated in Crandell feline kidney cell culture.
Farmed mink (Neovison vison) is one of the most important fur-bearing species worldwide, and coat colour is a crucial qualitative characteristic that contributes to the economic value of the fur. To identify additional genes that may play important roles in coat colour regulation, Illumina/Solexa high-throughput sequencing technology was used to catalogue the global gene expression profiles in mink skin with two different coat colours (black and white). RNA-seq analysis indicated that a total of 12,557 genes were differentially expressed in black versus white minks, with 3,530 genes up-regulated and 9,027 genes down-regulated in black minks. Significant differences were not observed in the expression of MC1R and TYR between the two different coat colours, and the expression of ASIP was not detected in the mink skin of either coat colour. The expression levels of KITLG, LEF1, DCT, TYRP1, PMEL, Myo5a, Rab27a and SLC7A11 were validated by qRT-PCR, and the results were consistent with RNA-seq analysis. This study provides several candidate genes that may be associated with the development of two coat colours in mink skin. These results will expand our understanding of the complex molecular mechanisms underlying skin physiology and melanogenesis in mink and will provide a foundation for future studies.
Copper serves as a co-factor for a host of metalloenzymes, particularly cytochrome c oxidase (COX). Although it is known that impaired COX function can lead to the excessive accumulation of reactive oxygen species (ROS), the mechanisms underlying how copper depletion leads to cell damage are poorly understood. Here, we have investigated the role of copper depletion during ferroptosis. The bathocuproinedisulfonic (BCS) treatment depolarized the mitochondrial membrane potential, increased the total cellular ROS levels, stimulated oxidative stress, and reduced the glutathione levels. Moreover, the depletion of copper limited the protein expression of glutathione peroxidase 4 (GPX4), which is the only enzyme that is known to prevent lipid peroxidation. Furthermore, we found that copper depletion decreased the sensitivity of the dermal papilla cells (DPCs) to erastin (an inducer of ferroptosis), and the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially prevented BCS-mediated cell death. Overall, these findings establish a direct link between copper and ferroptosis; BCS-mediated copper depletion strongly enhances ferroptosis via mitochondrial perturbation and a reduction in antioxidative mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.