Mannan-binding lectin (MBL) plays a key role in the lectin pathway of complement activation and can influence cytokine expression. Toll-like receptor 4 (TLR4) is expressed extensively and has been demonstrated to be involved in lipopolysaccharide (LPS)-induced signaling. We first sought to determine whether MBL exposure could modulate LPS-induced inflammatory cytokine secretion and nuclear factor-kB (NF-kB) activity by using the monocytoid cell line THP-1. We then investigated the possible mechanisms underlying any observed regulatory effect. Using ELISA and reverse transcriptase polymerase chain reaction (RT-PCR) analysis, we found that at both the protein and mRNA levels, treatment with MBL suppresses LPS-induced tumor-necrosis factor (TNF)-a and IL-12 production in THP-1 cells. An electrophoretic mobility shift assay and western blot analysis revealed that MBL treatment can inhibit LPS-induced NF-kB DNA binding and translocation in THP-1 cells. While the binding of MBL to THP-1 cells was evident at physiological calcium concentrations, this binding occurred optimally in response to supraphysiological calcium concentrations. This binding can be partly inhibited by treatment with either a soluble form of recombinant TLR4 extracellular domain or anti-TLR4 monoclonal antibody (HTA125). Activation of THP-1 cells by LPS treatment resulted in increased MBL binding. We also observed that MBL could directly bind to the extracellular domain of TLR4 in a dose-dependent manner, and this interaction could attenuate the binding of LPS to cell surfaces. Taken together, these data suggest that MBL may affect cytokine expression through modulation of LPS-/TLR-signaling pathways. These findings suggest that MBL may play an important role in both immune regulation and the signaling pathways involved in cytokine networks.
Mannan binding lectin (MBL), initially reported to activate the complement pathway, is also known to be involved in the pathogenesis of autoimmune diseases. We report a thus far unknown function of MBL as a suppressor of T-cell activation. MBL markedly inhibited T-cell proliferation induced by anti-CD3 and anti-CD28 antibodies. Moreover, the presence of MBL during T-cell priming interfered with proximal T-cell receptor signaling by decreasing phosphorylation of Lck, ZAP-70, and LAT. MBL bound to T cells through interaction between the collagen-like region of MBL and calreticulin (CRT) expressed on the T-cell surface. The neutralizing antibody against CRT abrogated MBL-mediated suppression of T-cell proliferation, suggesting that MBL down-modulates T-cell proliferation cell surface CRT. We further demonstrated that the feature of MBL-mediated T-cell suppression is shared by other serum collectins ( C1q and collectin 11). The concentrations of MBL correlated negatively with T-cell activation status in patients with early-stage silicosis. Furthermore, MBL efficiently inhibited activation and proliferation of autoreactive T cells derived from patients with silicosis, indicating that MBL serves as a negative feedback control of the T-cell responses.-Zhao, N., Wu, J., Xiong, S., Zhang, L., Lu, X., Chen, S., Wu, Q., Wang, H., Liu, Y., Chen, Z., Zuo, D. Mannan-binding lectin, a serum collectin, suppresses T-cell proliferation direct interaction with cell surface calreticulin and inhibition of proximal T-cell receptor signaling.
BackgroundMannan-binding lectin (MBL) is a pattern-recognition molecule present in serum, which is involved in the innate immune defense by activating complement and promoting opsonophagocytosis. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are crucial for the initiation of adaptive immunity. Lipopolysaccharide (LPS) has been shown to be a strong activator of the inflammatory response and immune regulation. We first examined whether MBL modulated LPS-induced cellular responses, then investigated possible mechanisms of its inhibitory effect.ResultsMBL at higher concentrations (10-20 μg/ml) significantly attenuated LPS-induced maturation of monocyte-derived DCs (MDCs) and production of proinflammatory cytokines (e.g., IL-12 and TNF-α), and inhibited their ability to activate allogeneic T lymphocytes. It bound to immature MDCs at physiological calcium concentrations, and was optimal at supraphysiological calcium concentrations. MBL also bound directly to immature MDCs and attenuated the binding of LPS to the cell surfaces, resulting in decreased LPS-induced nuclear factor-κB (NF-κB) activity in these cells.ConclusionAll these data suggest that MBL could affect the functions of DCs by modifying LPS-induced cellular responses. This study supports an important role for MBL in the regulation of adaptive immune responses and inflammatory responses.
The treatment of chronic diabetic wounds remains complicated, despite new insight into the cellular and molecular basis of wound healing and cutaneous regeneration. A growing body of clinical trials has shown that platelet release has a notable effectiveness on refractory ulcer healing. However, patients with chronic diabetic ulcers usually have poor general health, and the large-volume blood absence required to produce autologous platelet-rich plasma often causes adverse effects. To overcome the limitation, the homologous platelet gel (PG) from healthy donor was used for the treatment of chronic diabetic lower extremity wound in the study. We show here that homologous derived platelets significantly enhanced EVC304 cell and HaCaT cell proliferation and homologous PG was capable of prompting cell migration. Twenty-one patients with refractory diabetic lower extremity ulcers, who had no response to conventional treatments, were treated in this study. Our data indicated that homologous PG was effective for the enhancement and acceleration of diabetic lower extremity wounds healing. We propose that homologous PG appeared to enhance vascularization and epithelialization, which might induce a quicker healing process and and encourage controlled studies in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.