Seed germination commences from a low metabolic state to a bioactive state and is associated with changes in the pattern of gene expression. Recent studies have revealed that epigenetic processes are involved in abscisic acid (ABA)-regulated seed germination processes. In this study, we showed that the expression of both histone acetyltransferases (HATs) and histone deacetylases (HDACs) was increased gradually during seed germination accompanying an increase in overall acetylation level of histone H3. Application of exogenous ABA repressed the expression of HATs as well as HDACs and delayed histone acetylation. Suppressing HDAC by treatment with an HDAC inhibitor, trichostatin A (TSA), led to an increase in global histone acetylation and inhibited seed germination and growth. However, ABA and TSA both delayed the downregulation of the embryogenesis-related gene viviparous1 (VP1) during seed germination. The further chromatin immunoprecipitation experiments showed that the promoter region of the VP1 gene was deacetylated during seed germination, and this deacetylation event was inhibited by both ABA and TSA. These results suggested that a balance of the two enzymes HATs and HDACs affected the acetylation status of the VP1 gene and ABA selectively activated its transcription by an accumulation of acetylated histone H3 associated with the promoter region during seed germination.
The bacterial community and diversity in healthy and diseased konjac rhizosphere soils with different ages of continuous cropping were investigated using next-generation sequencing. The results demonstrated that the number of years of continuous cropping significantly altered soil bacterial community and diversity. Soil bacterial Shannon diversity index and Chao 1 index decreased with the increasing cropping years of konjac. After 1 year of cropping, the soil exhibited the highest bacterial relative abundance and diversity. Of the 44 bacterial genera (relative abundance ratio of genera greater than 0.3%), 14 were significantly affected by the duration of continuous cropping and plant status. With increasing continuous cropping, Alicyclobacillus decreased, while Achromobacter, Lactobacillus, Kaistobacter, Rhodoplanes increased after 3 years continuous cropping. Continuous cropping altered the structure and composition of the soil bacterial community, which led to the reduction in the beneficial bacteria and multiplication of harmful bacteria. These results will improve our understanding of soil microbial community regulation and soil health maintenance in konjac farm systems.
Species of the genus Allium are well known for their large genomes. Allium cepa is of great economic significance. Among vegetables, it ranks second after tomato in terms of the global production value. However, there is limited genomics information available on A. cepa. In this study, we sequenced the A. cepa genome at low-coverage and annotated repetitive sequences by using a combination of next-generation sequencing (NGS) and bioinformatics tools. Nearly 92% of 16 Gb haploid onion genome were defined as repetitive sequences, organized in 162 clusters of at least 0.01 percent of the genome. Of these, a proportion representing 40.5% of the genome were further analyzed in detail to obtain an overview of representative repetitive elements present in the A. cepa genome. Few representative satellite repeats were studied by fluorescence in situ hybridization (FISH) and southern blotting. These results provided a basis for evolutionary cytogenomics within the Allium genus.
Histone acetylation plays a critical role in controlling chromatin structure, and reactive oxygen species (ROS) are involved in cell cycle progression. To study the relationship between histone acetylation and cell cycle progression in plants, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor that can cause a significant increase in histone acetylation in both mammal and plant genomes, was applied to treat maize seedlings. The results showed that NaB had significant inhibition effects on different root zones at the tissue level and caused cell cycle arrest at preprophase in the root meristem zones. This effect was accompanied by a dramatic increase in the total level of acetylated lysine 9 on histone H3 (H3K9ac) and acetylated lysine 5 on histone H4 (H4K5ac). The exposure of maize roots in NaB led to a continuous rise of intracellular ROS concentration, accompanied by a higher electrolyte leakage ratio and malondialdehyde (MDA) relative value. The NaB-treated group displayed negative results in both TdT-mediated dUTP nick end labelling (TUNEL) and γ-H2AX immunostaining assays. The expression of topoisomerase genes was reduced after treatment with NaB. These results suggested that NaB increased the levels of H3K9ac and H4K5ac and could cause preprophase arrest accompanied with ROS formation leading to the inhibition of DNA topoisomerase.
Background The symptoms of cool-temperature-induced chlorosis (CTIC) are widely existed in higher plants. Although many studies have shown that the genetic mechanism of CTIC is generally controlled by recessive genes in model plants, the dominant inheritance of albinism has not been reported thus far. Here, two CTIC mutants, Red Kamome and White Kamome, were utilized to analyse the inheritance of the albino trait in ornamental kale. The objective of this investigation is to fine-map the target locus and identify the most likely candidate genes for albinism. Results Genetic analysis revealed that the albinism in the inner leaves of ornamental kale followed semi-dominant inheritance and was controlled by a single locus in two segregating populations. BSR-seq in combination with linkage analysis was employed to fine-map the causal gene, named AK (Albino Kale), to an approximate 60 kb interval on chromosome C03. Transcriptome data from two extreme pools indicated that the differentially expressed gene of Bol015404, which encodes a cytochrome P450 protein, was the candidate gene. The Bol015404 gene was demonstrated to be upregulated in the albino leaves of ornamental kale by qPCR. Additionally, the critical temperature for the albinism was determined between 10 °C and 16 °C by gradient test. Conclusions Using two independent segregating populations, the albino mutants were shown to be controlled by one semi-dominant gene, AK, in ornamental kale. The Bol015404 gene was co-segregated with albinism phenotypes, suggesting this unknown function P450 gene as the most likely candidate gene. The albino trait appeared caused by the low temperatures rather than photoperiod. Our results lay a solid foundation on the genetic control of albinism in ornamental kale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.