No abstract
Notch signaling mediates breast cancer cell survival and chemoresistance. In this report, we aimed to evaluate the antitumor efficacy of PF-03084014 in combination with docetaxel in triple-negative breast cancer models. The mechanism of action was investigated. PF-03084014 significantly enhanced the antitumor activity of docetaxel in multiple xenograft models including HCC1599, MDA-MB-231Luc, and AA1077. Docetaxel activated the Notch pathway by increasing the cleaved Notch1 intracellular domain and suppressing the endogenous Notch inhibitor NUMB. PF-03084014 used in combination with docetaxel reversed these effects and demonstrated early-stage synergistic apoptosis. Docetaxel elicited chemoresistance by elevating cytokine release and expression of survivin and induced an endothelial mesenchymal transition (EMT) phenotype by increasing the expressions of Snail, Slug, and N-cadherin. When reimplanted, the docetaxel-residual cells not only became much more tumorigenic, as evidenced by a higher fraction of tumor-initiating cells (TICs), but also showed higher metastatic potential compared with nontreated cells, leading to significantly shortened survival. In contrast, PF-03084014 was able to suppress expression of survivin and MCL1, reduce ABCB1 and ABCC2, upregulate BIM, reverse the EMT phenotype, and diminish the TICs. Additionally, the changes to the ALDH(+) and CD133(+)/CD44(+) subpopulations following therapy corresponded with the TIC self-renewal assay outcome. In summary, PF-03084014 demonstrated synergistic effects with docetaxel through multiple mechanisms. This work provides a strong preclinical rationale for the clinical utility of PF-03084014 to improve taxane therapy.
Purpose: P-cadherin is a membrane glycoprotein that functionally mediates tumor cell adhesion, proliferation, and invasiveness. We characterized the biological properties of PF-03732010, a human monoclonal antibody against P-cadherin, in cell-based assays and tumor models.Experimental Design: The affinity, selectivity, and cellular inhibitory activity of PF-03732010 were tested in vitro. Multiple orthotopic and metastatic tumor models were used for assessing the antitumor and antimetastatic activities of PF-03732010. Treatment-associated pharmacodynamic changes were also investigated.Results: PF-03732010 selectively inhibits P-cadherin-mediated cell adhesion and aggregation in vitro. In the P-cadherin-overexpressing tumor models, including MDA-MB-231-CDH3, 4T1-CDH3, MDA-MB-435HAL-CDH3, HCT116, H1650, PC3M-CDH3, and DU145, PF-03732010 inhibited the growth of primary tumors and metastatic progression, as determined by bioluminescence imaging. Computed tomography imaging, H&E stain, and quantitative PCR analysis confirmed the antimetastatic activity of PF-03732010. In contrast, PF-03732010 did not show antitumor and antimetastatic efficacy in the counterpart tumor models exhibiting low P-cadherin expression. Mechanistic studies via immunofluorescence, immunohistochemical analyses, and 3′-[18 F]fluoro-3′-deoxythymidine-positron emission tomography imaging revealed that PF-03732010 suppressed P-cadherin levels, caused degradation of membrane β-catenin, and concurrently suppressed cytoplasmic vimentin, resulting in diminished metastatic capacity. Changes in the levels of Ki67, caspase-3, and 3′-[ 18 F]fluoro-3′-deoxythymidine tracer uptake also indicated antiproliferative activity and increased apoptosis in the tested xenografts. Conclusions: These findings suggest that interrupting the P-cadherin signaling pathway may be a novel therapeutic approach for cancer therapy. PF-03732010 is presently undergoing evaluation in Phase 1 clinical trials. Clin Cancer Res; 16(21); 5177-88. ©2010 AACR.
Purpose: We aimed to assess the biologic activity of PF-03084014 in breast xenograft models. The biomarkers for mechanism and patient stratification were also explored.Experimental Design: The in vitro and in vivo properties of PF-03084014 were investigated. The mRNA expressions of 40 key Notch pathway genes at baseline or after treatment were analyzed to link with the antitumor efficacy of PF-03084014 in a panel of breast cancer xenograft models.Results: In vitro, PF-03084014 exhibited activity against tumor cell migration, endothelial cell tube formation, and mammosphere formation. In vivo, we observed apoptosis, antiproliferation, reduced tumor cell self-renewal ability, impaired tumor vasculature, and decreased metastasis activity after the treatment of PF-03084014. PF-03084014 treatment displayed significant antitumor activity in 10 of the 18 breast xenograft models. However, the antitumor efficacy in most models did not correlate with the in vitro antiproliferation results in the corresponding cell lines, suggesting the critical involvement of tumor microenvironment during Notch activation. In the tested breast xenograft models, the baseline expressions of the Notch receptors, ligands, and the cleaved Notch1 failed to predict the antitumor response to PF-03084014, whereas several Notch pathway target genes, including HEY2, HES4, and HES3, strongly corresponded with the response with a P value less than 0.01. Many of the best molecular predictors of response were also significantly modulated following PF-03084014 treatment.Conclusions: PF-03084014 showed antitumor and antimetastatic properties via pleiotropic mechanisms. The Notch pathway downstream genes may be used to predict the antitumor activity of PF-03084014 and enrich for responders among breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.