Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1b)treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1b-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy.
It is essential to rule out other causes of PO in diagnosing THS, with MRI playing a crucial role in differential diagnosis. It may be helpful to understand and master the entity of THS for researchers and clinicians to adjust the gradation and ranking of the diagnostic criteria.
Circular RNAs (circRNAs) represent a class of non-coding RNAs that are involved in transcriptional and posttranscriptional gene expression regulation and associated with different kinds of human diseases. However, the characterization and function of circular RNAs in peripheral nerve injuries remain elusive. Here, we established a rat sciatic nerve injury model and identified at least 4,942 distinct circular RNA candidates and a series of circular RNAs that were differentially expressed in injured nerve tissues compared with matched normal tissues. We characterized one frequently downregulated circular RNA, circRNA.2837, and further investigated its function in sciatic nerve injury. We found that circRNA.2837 regulated autophagy in neurons in vitro and in vivo, and downregulation of circRNA.2837 alleviated sciatic nerve injury via inducing autophagy in vivo. Mechanistically, knockdown of circRNA.2837 may protect neurons against neurological injury by acting as a sponge for members of miR-34 family. Our findings suggested that differentially expressed circular RNAs were involved in the pathogenesis of sciatic nerve injury, and circular RNAs exerted regulatory functions in sciatic nerve injury and might be used as potential targets in sciatic nerve injury therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.