In order to reduce the labor intensity of heavy-haul train drivers in the downgrade section and near the split phase area, the paper analyzes the factors that affect the driving strategy of heavy-haul train in accordance with the manual driving strategy. In this paper, a control model of heavy-haul train electric braking force based on support vector regression (SVR) is proposed to control the electric braking force. With the manual driving records used as training data, Electric braking force and other information are extracted as output results and features to train the control model. By trial and error, parameters of the control model are adjusted to optimize the model. The results show that the control model in this paper is close to the manual driving in the same situation, which is positive for reducing the labor intensity of drivers in heavy-haul railway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.