Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Background As a perennial crop, oil-Camellia possesses a long domestication history and produces high-quality seed oil that is beneficial to human health. Camellia oleifera Abel. is a sister species to the tea plant, which is extensively cultivated for edible oil production. However, the molecular mechanism of the domestication of oil-Camellia is still limited due to the lack of sufficient genomic information. Results To elucidate the genetic and genomic basis of evolution and domestication, here we report a chromosome-scale reference genome of wild oil-Camellia (2.95 Gb), together with transcriptome sequencing data of 221 cultivars. The oil-Camellia genome, assembled by an integrative approach of multiple sequencing technologies, consists of a large proportion of repetitive elements (76.1%) and high heterozygosity (2.52%). We construct a genetic map of high-density corrected markers by sequencing the controlled-pollination hybrids. Genome-wide association studies reveal a subset of artificially selected genes that are involved in the oil biosynthesis and phytohormone pathways. Particularly, we identify the elite alleles of genes encoding sugar-dependent triacylglycerol lipase 1, β-ketoacyl-acyl carrier protein synthase III, and stearoyl-acyl carrier protein desaturases; these alleles play important roles in enhancing the yield and quality of seed oil during oil-Camellia domestication. Conclusions We generate a chromosome-scale reference genome for oil-Camellia plants and demonstrate that the artificial selection of elite alleles of genes involved in oil biosynthesis contributes to oil-Camellia domestication.
The transition from vegetative to reproductive growth in woody perennials involves pathways controlling flowering timing, bud dormancy and outgrowth in responses to seasonal cues. However little is known about the mechanism governing the adaptation of signaling pathways to environmental conditions in trees. Camellia azalea is a rare species in this genus flowering during summer, which provides a unique resource for floral timing breeding. Here we reported a comprehensive transcriptomics study to capture the global gene profiles during floral bud development in C. azalea. We examined the genome-wide gene expression between three developmental stages including floral bud initiation, floral organ differentiation and bud outgrowth, and identified nine co-expression clusters with distinctive patterns. Further, we identified the differential expressed genes (DEGs) during development and characterized the functional properties of DEGs by Gene Ontology analysis. We showed that transition from floral bud initiation to floral organ differentiation required changes of genes in flowering timing regulation, while transition to floral bud outgrowth was regulated by various pathways such as cold and light signaling, phytohormone pathways and plant metabolisms. Further analyses of dormancy associated MADS-box genes revealed that SVP- and AGL24- like genes displayed distinct expression patterns suggesting divergent roles during floral bud development.
BackgroundDouble flower domestication is of great value in ornamental plants and presents an excellent system to study the mechanism of morphological alterations by human selection. The classic ABC model provides a genetic framework underlying the control of floral organ identity and organogenesis from which key regulators have been identified and evaluated in many plant species. Recent molecular studies have underscored the importance of C-class homeotic genes, whose functional attenuation contributed to the floral diversity in various species. Cultivated Camellia japonica L. possesses several types of double flowers, however the molecular mechanism underlying their floral morphological diversification remains unclear.ResultsIn this study, we cloned the C-class orthologous gene CjAG in C. japonica. We analyzed the expression patterns of CjAG in wild C. japonica, and performed ectopic expression in Arabidopsis. These results revealed that CjAG shared conserved C-class function that controls stamen and carpel development. Further we analyzed the expression pattern of CjAG in two different C. japonica double-flower varieties, ‘Shibaxueshi’ and ‘Jinpanlizhi’, and showed that expression of CjAG was highly contracted in ‘Shibaxueshi’ but expanded in inner petals of ‘Jinpanlizhi’. Moreover, detailed expression analyses of B- and C-class genes have uncovered differential patterns of B-class genes in the inner organs of ‘Jinpanlizhi’.ConclusionsThese results demonstrated that the contraction and expansion of CjAG expression were associated with the formation of different types of double flowers. Our studies have manifested two different trajectories of double flower domestication regarding the C-class gene expression in C. japonica.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0288-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.