Lithium−sulfur (Li−S) battery is a promising energy storage system due to its cost effectiveness and high energy density. However, formation of Li dendrites from Li metal anode and shuttle effect of lithium polysulfides (LiPSs) from S cathode impede its practical application. Herein, ultrafine ZnS nanodots are uniformly grown on 2D MXene nanosheets by a low‐temperature (60 °C) hydrothermal method for the first time. Distinctively, the ZnS nanodot‐decorated MXene nanosheets (ZnS/MXene) can be easily filtered to be a flexible and freestanding film in several minutes. The ZnS/MXene film can be used as a current collector for Li‐metal anode to promote uniform Li deposition due to the superior lithiophilicity of ZnS nanodots. ZnS/MXene powders obtained by freeze drying can be used as separator decorator to address the shuttle effect of LiPSs due to their excellent adsorbability. Theoretical calculation proves that the existence of ZnS nanodots on MXene can obviously improve the adsorption ability of ZnS/MXene with Li+ and LiPSs. Li−S full cells with composite Li‐metal anode and modified separator exhibit remarkable rate and cycling performance. Other transition metal sulfides (CdS, CuS, etc.) can be also grown on 2D MXene nanosheets by the low‐temperature hydrothermal strategy.
Organic electrode materials (OEMs) are emerging green power because of the promising advantages such as environmental friendliness, abundant sources, easy recycling, and structural diversity. However, several inherent issues, including low electronic conductivity, dissolution of active materials, and particle pulverization restrict their practical application. MXene, as a novel 2D material has exhibited enormous potential to solve the issues of OEMs due to its high conductivity, unique structure, exceptional mechanical property, and abundant surface groups. Up to now, various effective strategies have been presented and achieved positive effects, such as constructing heterojunction structures, in situ assembly, dip-coating, preparing freestanding MXene paper, etc. Nonetheless, comprehensive review of the progress and status is rare. Herein, an overview of the application of MXene in organic electrode materials for rechargeable batteries is systematically put forward. Meanwhile, recent progress and future development directions are presented. This review can serve as a guide for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.