We propose and demonstrate an on-chip coupling resonant system to generate electromagnetically induced transparency (EIT)-like effect and Fano resonance on silicon platform. It is composed of a microring resonator (MRR) and two cascaded Sagnac-loop mirrors (SLMs) assisted Fabry-Perot (FP) cavity on silicon-on-insulator. According to the coupling conditions of the MRR, two cases are studied theoretically. When the MRR is over coupling, EIT-like transmission can be observed. In contrast, Fano resonances can be generated by the condition of under coupling. In the experiment, the add-drop MRR is under coupling, leading to a sharp asymmetric line shape for Fano resonance. The resonance wavelength of the MRR can be dynamically tuned based on thermal-optic effects by tuning the micro-heater. The experiment results show Fano resonances with maximum extinction ratio (ER) of 23.22 dB and maximum slope rate (SR) of 252 dB/nm. Moreover, the wavelength of Fano resonance can be shifted widely with a tuning efficiency of 0.2335 nm/mW.
We fabricate a nonlinear optical device based on graphene-silicon microring resonator (GSMR). Using such graphene-assisted nonlinear optical device, we experimentally demonstrate up and down wavelength conversion of a 10-Gbaud quadrature phase-shift keying (QPSK) signal by exploiting degenerate four-wave mixing (FWM) progress in the fabricated GSMR. We study the conversion efficiency as a function of the pump power. In addition, the resonant wavelength of GSMR is tuned by changing the temperature from 20°C to 40°C. We evaluate the bit-error rate (BER) performance for up and down wavelength conversion. The observed optical signal-to-noise ratio (OSNR) penalties for QPSK up and down wavelength conversion are less than 1.4 dB at a BER of 1 × 10-3. The BER performance as a function of the pump power for up wavelength conversion is also assessed. The minimum OSNR penalty is less than 0.8 dB when the pump power is 13.3 dBm.
We propose and demonstrate a reconfigurable and tunable chip-scale comb filter and (de)interleaver on a silicon platform. The silicon-based photonic integrated device is formed by Sagnac loop mirrors (SLMs) with directional couplers replaced by multi-mode interference (MMI) assisted tunable Mach-Zehnder interferometer (MZI) couplers. The device can be regarded as a large SLM incorporating two small SLMs which form a Fabry-Perot (FP) cavity. By appropriately adjusting the micro-heaters in tunable MZI couplers and cavity, switchable operation between comb filter and (de)interleaver and extinction ratio and wavelength tunable operations of comb filter and (de)interleaver are achievable by thermo-optic tuning. Reconfigurable comb filter and (de)interleaver is demonstrated in the experiment. The central wavelength shifts of comb filter and (de)interleaver are demonstrated with wavelength tuning efficiencies of ~0.0224 nm/mW and ~0.0193 nm/mW, respectively. The 3-dB bandwidth of the comb filter is ~0.032 nm. The 3-dB and 20-dB bandwidths of the (de)interleaver passband are ~0.225 nm and ~0.326 nm. The obtained results indicate that the designed and fabricated device provides switchable comb filtering and interleaving functions together with extinction ratio and wavelength tunabilities. Reconfigurable and tunable silicon-based comb filter and (de)interleaver may find potential applications in robust wavelength-division multiplexing (WDM) optical communication systems.
We present a subwavelength grating slot (SWGS) waveguide on silicon platform. The SWGS waveguide is characterized by the merging of a slot structure and a subwavelength grating (SWG) structure. The mode guiding mechanism (SWG slot mode) relies on the combination of surface enhanced supermode (slot mode) in a slot waveguide and Bloch mode (SWG mode) in an SWG waveguide. The mode properties and nonlinearities of silicon-based strip waveguide, slot waveguide, SWG waveguide and SWGS waveguide are studied in detail for comparison. It is found that the designed SWGS waveguide with SiO/air cladding features greatly reduced nonlinearity due to the delocalized light from the silicon region. We also optimize the SWGS waveguide with varied geometries (silicon width, slot width, period, duty cycle) using the mode confinement factor and evaluation factor. An ultralow nonlinearity of 3.20 /W/m is obtained. Moreover, we design two types of compatible strip-to-SWGS mode converters, showing favorable performance with broadband high conversion efficiency. The obtained results indicate that the proposed SWGS waveguide with greatly reduced nonlinearity may find potential applications in chip-scale data transmission for optical interconnects. The SWGS waveguide with air cladding or low-refractive-index nonlinear material cladding may also see possible applications in optical sensing and nonlinear optical signal processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.