Repetitive transcranial magnetic stimulation (rTMS) acts as a kind of widely-applied and non-invasive method in the intervention of some neurological disorders. This prospective, randomized, double-blind, placebo-controlled trial investigates the effect of rTMS on 30 cases of Alzheimer’s disease (AD) participants, who were classified into mild and moderate groups. Neuropsychological tests were carried out using the AD Assessment Scale-cognitive subscale (ADAS-cog), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and World Health Organization University of California-Los Angeles, Auditory Verbal Learning Test (WHO-UCLA AVLT) before, immediately after, and 6 weeks after the intervention. In this work, data from 30 AD patients revealed that there was no obvious interaction effect of time-by-group. The ADAS-cog, MMSE and WHO-UCLA AVLT score in the rTMS group was significantly improved compared with baselines at 6 weeks after treatment (all p<0.05). Meanwhile, MoCA scores were also obviously ameliorated in the mild AD patients with rTMS. Besides, subgroup analysis showed that the effect of rTMS on the memory and language of mild AD patients was superior to those of moderate AD patients. In conclusion, our findings suggested that repetitive transcranial magnetic stimulation improves cognitive function, memory and language level of AD patients, especially in the mild stage of AD. Thus, rTMS can be recommended as a promising adjuvant therapy combined with cholinesterase inhibitors at the mild stage of AD patients.
New‐era soft microrobots for biomedical applications need to mimic the essential structures and collective functions of creatures from nature. Biocompatible interfaces, intelligent functionalities, and precise locomotion control in a collective manner are the key parameters to design soft microrobots for the complex bio‐environment. In this work, a biomimetic magnetic microrobot (BMM) inspired by magnetotactic bacteria (MTB) with speedy motion response and accurate positioning is developed for targeted thrombolysis. Similar to the magnetosome structure in MTB, the BMM is composed of aligned iron oxide nanoparticle (MNP) chains embedded in a non‐swelling microgel shell. Linear chains in BMMs are achieved due to the interparticle dipolar interactions of MNPs under a static magnetic field. Simulation results show that, the degree and speed of assembly is proportional to the field strength. The BMM achieves the maximum speed of 161.7 µm s−1 and accurate positioning control under a rotating magnetic field with less than 4% deviation. Importantly, the locomotion analyses of BMMs demonstrate the frequency‐dependent synchronization under 8 Hz and asynchronization at higher frequencies due to the increased drag torque. The BMMs can deliver and release thrombolytic drugs via magneto‐collective control, which is promising for ultra‐minimal invasive thrombolysis.
Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as HO or O. ROS are well known for being both beneficial and deleterious. Recent studies have indicated that ROS are deleterious to cells, leading to programmed cell death (PCD) at high concentrations. At low concentrations, however, ROS can act as signaling molecules in a variety of cellular processes. In this review, we present an update of our current understanding of the role and regulation of reactive oxygen species in various viral infections, cellular signaling pathways and immune responses. We then discuss how the antioxidant defense system acts as an antiviral effector to limit cell damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.