Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards low-or high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low-and highorder feature interactions. The proposed model, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared input to its "wide" and "deep" parts, with no need of feature engineering besides raw features. Comprehensive experiments are conducted to demonstrate the effectiveness and efficiency of DeepFM over the existing models for CTR prediction, on both benchmark data and commercial data.
Few-shot learning is challenging for learning algorithms that learn each task in isolation and from scratch. In contrast, meta-learning learns from many related tasks a meta-learner that can learn a new task more accurately and faster with fewer examples, where the choice of meta-learners is crucial. In this paper, we develop Meta-SGD, an SGD-like, easily trainable meta-learner that can initialize and adapt any differentiable learner in just one step, on both supervised learning and reinforcement learning. Compared to the popular meta-learner LSTM, Meta-SGD is conceptually simpler, easier to implement, and can be learned more efficiently. Compared to the latest meta-learner MAML, Meta-SGD has a much higher capacity by learning to learn not just the learner initialization, but also the learner update direction and learning rate, all in a single meta-learning process. Meta-SGD shows highly competitive performance for few-shot learning on regression, classification, and reinforcement learning.
Recently, there has been a growing interest in automating the process of neural architecture design, and the Differentiable Architecture Search (DARTS) method makes the process available within a few GPU days. In particular, a hypernetwork called one-shot model is introduced, over which the architecture can be searched continuously with gradient descent. However, the performance of DARTS is often observed to collapse when the number of search epochs becomes large. Meanwhile, lots of "skip-connects" are found in the selected architectures. In this paper, we claim that the cause of the collapse is that there exist cooperation and competition in the bi-level optimization in DARTS, where the architecture parameters and model weights are updated alternatively. Therefore, we propose a simple and effective algorithm, named "DARTS+", to avoid the collapse and improve the original DARTS, by "early stopping" the search procedure when meeting a certain criterion. We demonstrate that the proposed early stopping criterion is effective in avoiding the collapse issue. We also conduct experiments on benchmark datasets and show the effectiveness of our DARTS+ algorithm, where DARTS+ achieves 2.32% test error on CIFAR10, 14.87% on CIFAR100, and 23.7% on ImageNet. We further remark that the idea of "early stopping" is implicitly included in some existing DARTS variants by manually setting a small number of search epochs, while we give an explicit criterion for "early stopping".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.