We mimic unique honeycomb structure as well as its functions of storing honey and pollen to assemble Au nanoparticle pattern on honeycomb-like Al nanobowl array by utilizing solid state dewetting process. Patterned Au nanoarrays of ‘one particle per bowl’ with tunable plasmonic bands ranging from the visible to the near-infrared region are fabricated by finely selecting the initial thickness of Au film, the geometry of Al nanobowl array and the thermal treatment parameters. This work presents a powerful approach to assemble Au nanoparticles into high density nanoarrays with superior spatial resolution, offering highly concentrated electromagnetic fields for plasmonic sensor applications.
To improve the adsorption selectivity towards hexavalent chromium anion (Cr(VI)), surface Cr(VI)-imprinted polypropylene (PP) fibers were fabricated by the plasma-mediated grafting strategy. Hence, a non-thermal Rradio frequency discharge plasma irradiation followed by a gaseous phase grafting was used to load acrylic acid (AA) onto PP fibers, which was afterwards amidated with triethylenetetramine and subjected to imprinting with a Cr(VI) template. The plasma irradiation conditions, i.e., gas species, output power, pressure, and time, were optimized and then the influence of grafting time, pressure, and temperature on the grafting degree of AA was investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy were used for the characterization of pristine and modified fibers and to confirm the synthesis success. The hydrophilicity of modified fibers was greatly improved compared with pristine PP fibers. The adsorption thermodynamics and kinetics of Cr(VI) were investigated, as well as the elution efficiency and reusability. The prepared imprinted fibers showed superior adsorption selectivity to Cr(VI) compared with non-imprinted fibers. Finally, the stability of the imprinted fibers against the oxidation ability of Cr(VI) is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.