Shape memory epoxy polymer (SMEP) composite specimens with different graphene oxide (GO) contents were manufactured to study the effects of GO mass fractions on epoxy polymer composites. While ensuring the shape memory effect of SMEP, the addition of GO also remarkably strengthened the mechanical performance of the polymers. Analyses of the epoxy polymer composites’ thermal, mechanical, and shape memory performance were conducted through carrying out dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and static tensile, three-point bending, impact, and shape memory tests. Moreover, the tensile fracture, bending fracture, and impact fracture interfaces of epoxy resin composites were examined with scanning electron microscopy. The final test results indicated that when the GO content was 0.8 wt %, SMEP composites had good shape memory performance and optimum thermal and mechanical performance.
Polymer composites are sensitive to impact loading due to their low impact resistance. Shape memory alloy (SMA) wires have been used to improve the impact resistance of the polymer composite materials because of their unique superelasticity performance. In this study, a new SMA hybrid basalt fiber-reinforced polymer composite embedded with two perpendicular layers of superelastic SMA wires is designed and the low-velocity impact behavior is experimental investigated. For contrast, the conventional polymer composite without SMA wires is also tested as the reference laminate. The tests are carried out at three different impact energy levels (30, 60 and 90 J). Moreover, to find out indications for manufacturing of SMA hybrid composites with high impact resistance, four different SMA wires embedded modes are investigated. Visual inspection and scanning electron microscope methods are adopted to identify the damage modes of the impacted samples. Results show that the impact resistance of the hybrid laminates is improved due to the hybridization of SMA wires. The most effective impact resistance of the SMA hybrid composites can be obtained by incorporating the SMA wires with one layer between the front two plies and another layer between the bottom two plies into the composite structure.
Most foam core sandwich panels are sensitive to the impact load because of the poor toughness of thin composite face-sheets and the low strength of foam core. Superelastic shape memory alloy (SMA) wires have been applied to enhance the impact damage resistance of composite laminates in recent decades. To improve the impact damage resistance of foam core sandwich panels and to protect the foam core, SMA wires were incorporated into the face-sheets of foam core sandwich panels in this work. Eight new types of SMA hybrid sandwich panels were designed, and low-velocity impact tests were carried out at an impact energy of 35 J. The damage morphology of the impacted sandwich panels was identified by visual inspection and scanning electron microscope technology. Results indicate that the impact damage resistance of the SMA hybrid sandwich panels is enhanced. The damage area in the hybrid sandwich panels is greatly reduced and a decrease of 85.63% can be reached in the bottom face-sheet. The maximum contact force has an improvement of 28.15% when the two layers of SMA wires are incorporated into the bottom face-sheet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.