The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.
A recent temperature reconstruction of global annual temperature shows Early Holocene warmth followed by a cooling trend through the Middle to Late Holocene [Marcott SA, et al., 2013, Science 339(6124):1198-1201. This global cooling is puzzling because it is opposite from the expected and simulated global warming trend due to the retreating ice sheets and rising atmospheric greenhouse gases. Our critical reexamination of this contradiction between the reconstructed cooling and the simulated warming points to potentially significant biases in both the seasonality of the proxy reconstruction and the climate sensitivity of current climate models.global temperature | Holocene temperature | model-data inconsistency I n the latest reconstruction of the global surface temperature throughout the Holocene (1) (hereafter M13), the most striking feature is a pronounced cooling trend of ∼0.5°C following the Holocene Thermal Maximum (HTM) (∼10-6 ka) toward the late Holocene, with the Neoglacial cooling culminating in the Little Ice Age (LIA; ∼1,800 common era) (Fig. 1, blue). Numerous previous reconstructions have shown cooling trends in the Holocene, but most of these studies attribute the cooling trend to regional and/or seasonal climate changes (2-6). The distinct feature of the M13 reconstruction is that it arguably infers the cooling trend in the global mean and annual mean temperature. This inferred global annual cooling in the Holocene is puzzling: With no direct net contribution from the orbital insolation, the global annual mean radiative forcing in the Holocene should be dominated by the retreating ice sheets and rising atmospheric greenhouse gases (GHGs), with both favoring a globally averaged warming. Therefore, how can the global annual temperature exhibit a cooling trend in response to global warming forcing? This inconsistency between the reconstructed cooling and the inferred warming forced by GHGs and ice sheet poses the so-called Holocene temperature conundrum and will be the subject of this study. Here, we study the global annual temperature trend in the Holocene and its physical mechanism by comparing the temperature reconstruction with three different transient climate model simulations. Our analysis shows a robust warming trend in current climate models, opposite from the cooling in the M13 reconstruction. This model-data discrepancy suggests potentially significant biases in both the reconstructions and current climate models, and calls for a major reexamination of global climate evolution in the Holocene. Model ExperimentsWe analyzed transient climate simulations in three coupled ocean-atmosphere models [Community Climate System Model 3 (CCSM3) (7), Fast Met Office/UK Universities Simulator (FAMOUS) (8), and Loch-Vecode-Ecbilt-Clio-Agism Model (LOVECLIM) (9); Methods] that are subject to realistic climate forcings of orbitally driven insolation variations, GHGs, continental ice sheets, and the associated meltwater fluxes. The three models all simulate a robust annual mean warming (∼0.5°C) throughout ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.