Background:
The ubiquitin-proteasome system (UPS) and autophagy are 2 major protein degradation pathways in eukaryotic cells. We previously identified a switch from UPS to autophagy with changes in BAG3 (B-cell lymphoma 2-associated-athanogene 3) expression after cerebral ischemia in mice. BAG3 is an antiapoptotic-cochaperone that is directly involved in cellular protein quality control as a mediator for selective macroautophagy. Here, we aimed to investigate the role of BAG3 in ischemic stroke.
Methods:
Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation were used to mimic cerebral ischemia in vivo and in vitro. The UPS inhibitor MG132 and autophagy inhibitor 3-MA (3-methyladenine) were administered to mice to identify how BAG3 was involved after MCAO/R. Adeno-associated virus and lentiviral vector were used to regulate BAG3 expression in vivo and in vitro, respectively. Behavioral tests, 2,3,5-triphenyltetrazolium chloride staining, and Hematoxylin & Eosin staining were performed to evaluate cerebral injury following MCAO/R, and a Cell Counting kit-8 assay was conducted to assess oxygen-glucose deprivation/reoxygenation–induced injury in cells. Brain tissues and cell lysates were collected and analyzed for UPS activation, autophagy, and apoptosis.
Results:
The UPS inhibitor alleviated MCAO injury in mice and increased autophagy and BAG3 expression, whereas the autophagy inhibitor exacerbated MCAO/R-induced injury. In addition, BAG3 overexpression significantly improved neurological outcomes, reduced infarct volume in vivo, and enhanced cell survival by activating autophagy and suppressing apoptosis in vitro.
Conclusions:
Our findings indicate that BAG3 overexpression activates autophagy and inhibits apoptosis to prevent cerebral ischemia/reperfusion and hypoxia/reoxygenation injury, suggesting a potential therapeutic benefit of BAG3 expression in cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.