Background Cardiac hypertrophy and heart failure are associated with metabolic dysregulation and a state of chronic energy deficiency. Although several disparate changes in individual metabolic pathways have been described, there has been no global assessment of metabolomic changes in hypertrophic and failing hearts in vivo. Here, we investigated the impact of pressure overload and infarction on myocardial metabolism. Methods and Results Male C57BL/6J mice were subjected to transverse aortic constriction (TAC) or permanent coronary occlusion (myocardial infarction; MI). A combination of LC/MS/MS and GC/MS techniques was used to measure 288 metabolites in these hearts. Both TAC and MI were associated with profound changes in myocardial metabolism affecting up to 40% of all metabolites measured. Prominent changes in branched amino acids acids (BCAAs) were observed after 1 week of TAC and 5 days after MI. Changes in BCAAs after MI were associated with myocardial insulin resistance. Longer duration of TAC and MI led to a decrease in purines, acylcarnitines, fatty acids and several lysolipid and sphingolipid species, but a marked increase in pyrimidines as well as ascorbate, heme and other indices of oxidative stress. Cardiac remodeling and contractile dysfunction in hypertrophied hearts were associated also with large increases in myocardial, but not plasma, levels of the polyamines putrescine and spermidine as well as the collagen breakdown product prolylhydroxyproline. Conclusions These findings reveal extensive metabolic remodeling common to both hypertrophic and failing hearts that are indicative of extensive extracellular matrix remodeling, insulin resistance and perturbations in amino acid, lipid and nucleotide metabolism.
BackgroundAcrolein is a reactive aldehyde present in high amounts in coal, wood, paper, and tobacco smoke. It is also generated endogenously by lipid peroxidation and the oxidation of amino acids by myeloperoxidase. In animals, acrolein exposure is associated with the suppression of circulating progenitor cells and increases in thrombosis and atherogenesis. The purpose of this study was to determine whether acrolein exposure in humans is also associated with increased cardiovascular disease (CVD) risk.Methods and ResultsAcrolein exposure was assessed in 211 participants of the Louisville Healthy Heart Study with moderate to high (CVD) risk by measuring the urinary levels of the major acrolein metabolite—3‐hydroxypropylmercapturic acid (3‐HPMA). Generalized linear models were used to assess the association between acrolein exposure and parameters of CVD risk, and adjusted for potential demographic confounders. Urinary 3‐HPMA levels were higher in smokers than nonsmokers and were positively correlated with urinary cotinine levels. Urinary 3‐HPMA levels were inversely related to levels of both early (AC133+) and late (AC133−) circulating angiogenic cells. In smokers as well as nonsmokers, 3‐HPMA levels were positively associated with both increased levels of platelet–leukocyte aggregates and the Framingham Risk Score. No association was observed between 3‐HPMA and plasma fibrinogen. Levels of C‐reactive protein were associated with 3‐HPMA levels in nonsmokers only.ConclusionsRegardless of its source, acrolein exposure is associated with platelet activation and suppression of circulating angiogenic cell levels, as well as increased CVD risk.
We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile 13 C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U-13 C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to ≈ 1% or better based on natural abundance background, and depended on the signal-tonose ratio. The time course of incorporation of 13 C from [U-13 C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional 13 C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.
SummaryThe glandular trichome is an excellent model system for investigating plant metabolic processes and their regulation within a single cell type. We utilized a proteomics-based approach with isolated trichomes of four different sweet basil (Ocimum basilicum L.) lines possessing very different metabolite profiles to clarify the regulation of metabolism in this single cell type. Significant differences in the distribution and accumulation of the 881 highly abundant and non-redundant protein entries demonstrated that although the proteomes of the glandular trichomes of the four basil lines shared many similarities they were also each quite distinct. Correspondence between proteomic, expressed sequence tag, and metabolic profiling data demonstrated that differential gene expression at major metabolic branch points appears to be responsible for controlling the overall production of phenylpropanoid versus terpenoid constituents in the glandular trichomes of the different basil lines. In contrast, post-transcriptional and post-translational regulation of some enzymes appears to contribute significantly to the chemical diversity observed within compound classes for the different basil lines. Differential phosphorylation of enzymes in the 2-C-methyl-D-erythritol 4-phosphate (MEP)/ terpenoid and shikimate/phenylpropanoid pathways appears to play an important role in regulating metabolism in this single cell type. Additionally, precursors for different classes of terpenoids, including mono-and sesquiterpenoids, appear to be almost exclusively supplied by the MEP pathway, and not the mevalonate pathway, in basil glandular trichomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.