Oral supplemented nutraceuticals derived from food sources are surmised to improve the human health through interaction with the gastrointestinal bacteria. However, the lack of fundamental quality control and authoritative consensus (e.g., formulation, route of administration, dose, and dosage regimen) of these non-medical yet bioactive compounds are one of the main practical issues resulting in inconsistent individual responsiveness and confounded clinical outcomes of consuming nutraceuticals. Herein, we studied the dose effects of widely used food supplement, microalgae spirulina ( Arthrospira platensis ), on the colonic microbiota and physiological responses in healthy male Balb/c mice. Based on the analysis of 16s rDNA sequencing, compared to the saline-treated group, oral administration of spirulina once daily for 24 consecutive days altered the diversity, structure, and composition of colonic microbial community at the genus level. More importantly, the abundance of microbial taxa was markedly differentiated at the low (1.5 g/kg) and high (3.0 g/kg) dose of spirulina , among which the relative abundance of Clostridium XIVa, Desulfovibrio, Eubacterium, Barnesiella, Bacteroides , and Flavonifractor were modulated at various degrees. Evaluation of serum biomarkers in mice at the end of spirulina intervention showed reduced the oxidative stress and the blood lipid levels and increased the level of appetite controlling hormone leptin in a dose-response manner, which exhibited the significant correlation with differentially abundant microbiota taxa in the cecum. These findings provide direct evidences of dose-related modulation of gut microbiota and physiological states by spirulina , engendering its future mechanistic investigation of spirulina as potential sources of prebiotics for beneficial health effects via the interaction with gut microbiota.
Background The effects of vitamin and mineral supplementation on women with gestational diabetes mellitus (GDM) have not been well established. We conduct a meta-analysis to evaluate the effects of vitamin and mineral supplementation on glycemic control, inflammation and oxidative stress for women with GDM. Methods A systematic search of randomized controlled trials (RCTs) was conducted from PubMed, Embase, Web of Science and Cochrane Library up to July, 2020. Various results were pooled by using Review manager 5.3 and Stata 12.0. Mean difference (MD) with 95% confidence interval (CI) was estimated. Heterogeneity between studies was assessed by I-squared (I2) tests. Results Six hundred ninety-eight patients from 12 trials were included in our meta-analysis. Magnesium, zinc, selenium, calcium, vitamin D and E (alone or in combination) were found to significantly improve glycemic control in women with GDM compared to those receiving placebos: fasting plasma glucose (FPG) (MD = - 9.02; 95% CI: - 12.09, - 5.96; P < 0.00001), serum insulin (MD = - 4.33; 95% CI: - 5.35, - 3.32; P < 0.00001), homeostasis model assessment-insulin resistance (HOMA-IR) (MD = - 1.34; 95% CI: - 1.60, - 1.07; P < 0.00001), and homeostasis model of assessment for β cell function (HOMA-B) (MD = - 15.58; 95% CI: - 23.70, - 7.46; P = 0.0002). Vitamin and mineral supplementation was found to attenuated inflammation and oxidative stress through decreasing high-sensitivity C-reactive protein (hs-CRP) (MD = - 1.29; 95% CI: - 1.82, - 0.76; P < 0.00001), malondialdehyde (MDA) (MD = - 0.71; 95% CI: - 0.97, - 0.45; P < 0.00001), and increasing total antioxidant capacity (TAC) (MD = 45.55; 95% CI: 22.02, 69.08; P = 0.0001). Conclusions This meta-analysis shows that vitamin and mineral supplementation significantly improved glycemic control, attenuated inflammation and oxidative stress in women with GDM.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The objectives of this study were to prepare injection-moulded wood-based plastics and to characterize their mechanical properties. Injection-moulded wood-based plastics with satisfactory flexural (65.7 MPa) and tensile strengths (30.1 MPa) were successfully obtained through a simple reaction of mulberry branch meal with phthalic anhydride (PA) in 1-methylimidazole under mild condition. The X-ray diffraction results indicated complete disruption of the crystallinity of cellulose because the pattern obtained for esterified fiber was almost a straight line without any peaks. The peaks in the Fourier transform infrared spectroscopy spectra (1738 and 748 cm 21 ) and NMR spectra (173.3 and 133.5 ppm) indicated the attachment of 0-carboxybenzoyl groups onto the wood fibers via ester bonds. The differential scanning calorimetry curves showed that the glass transition temperature decreased with increasing weight percentage gain (WPG). The derivative thermogravimetric analysis curves indicated that esterified wood fiber was less thermally stable than the untreated fiber and that the component tends to be homogeneous with increasing WPG. Scanning electron microscope revealed that the fractured surfaces of most samples were smooth and uniform but that high temperature and less PA dosage could lead to the appearance of holes and cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.