Plasmonic nanostructures have tremendous potential to be applied in photocatalytic CO 2 reduction, since their localized surface plasmon resonance can collect low-energy-photons to derive energetic "hot electrons" for reducing the CO 2 activation-barrier. However, the hot electron-driven CO 2 reduction is usually limited by poor efficiency and low selectivity for producing kinetically unfavorable hydrocarbons. Here, a new idea of plasmonic active "hot spot"confined photocatalysis is proposed to overcome this drawback. W 18 O 49 nanowires on the outer surface of Au nanoparticles-embedded TiO 2 electrospun nanofibers are assembled to obtain lots of Au/TiO 2 /W 18 O 49 sandwichlike substructures in the formed plasmonic heterostructure. The short distance (< 10 nm) between Au and adjacent W 18 O 49 can induce an intense plasmon-coupling to form the active "hot spots" in the substructures. These active "hot spots" are capable of not only gathering the incident light to enhance "hot electrons" generation and migration, but also capturing protons and CO through the dual-hetero-active-sites (Au-O-Ti and W-O-Ti) at the Au/TiO 2 /W 18 O 49 interface, as evidenced by systematic experiments and simulation analyses. Thus, during photocatalytic CO 2 reduction at 43± 2 °C, these active "hot spots" enriched in the well-designed Au/TiO 2 /W 18 O 49 plasmonic heterostructure can synergistically confine the hot-electron, proton, and CO intermediates for resulting in the CH 4 and CO productionrates at ≈35.55 and ≈2.57 µmol g −1 h −1 , respectively, and the CH 4 -product selectivity at ≈93.3%.
With an implicit Particle-in-cell/Monte Carlo model, capacitively coupled plasmas are studied in two-dimensional and axisymmetric geometry. Self-bias dc voltage effects are self-consistently considered. Due to finite length effects,the self-bias dc voltages show sophisticating relations with the electrode areas. Two-dimensional kinetic effects are also illuminated. Compare to the fluid mode, PIC/MC model is numerical-diffusion-free and thus finer properties of the plasmas are simulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.