Abstract. Sustainable management of the water–energy–food (WEF) nexus remains an urgent challenge, as interactions between WEF and human sensitivity and reservoir operation in the water system are typically neglected. This study proposes a new approach for modeling the WEF nexus by incorporating human sensitivity and reservoir operation into the system. The co-evolution behaviors of the nexus across water, energy, food, and society (WEFS) were simulated using the system dynamic model. Reservoir operation was simulated to determine the water supply for energy and food systems by the Interactive River–Aquifer Simulation water resources allocation model. Shortage rates for water, energy, and food resulting from the simulations were used to qualify their impacts on the WEFS nexus through environmental awareness in society. Human sensitivity indicated by environmental awareness can then adjust the co-evolution behaviors of the WEFS nexus through feedback loops. The proposed approach was applied to the mid–lower reaches of the Hanjiang River basin in China as a case study. Results indicate that environmental awareness shows the potential to capture human sensitivity to shortages from water, energy, and food systems. Parameters related to boundary conditions and critical values can dominate environmental awareness feedback to regulate socioeconomic expansion to maintain the integrated system from constant resource shortages. The annual average energy shortage rate thereby decreased from 17.16 % to 5.80 % by taking environmental awareness feedback, which contributes to the sustainability of the WEFS nexus. Rational water resources allocation can ensure water supply through reservoir operation. The annual average water shortage rate decreased from 15.89 % to 7.20 % as water resources allocation was considered. Threats from water shortage on the concordant development of the WEFS nexus are significantly alleviated, particularly for the area with a limited regulating capacity for the water project. Therefore, this study contributes to the understanding of interactions across the WEFS systems and helps in improving the efficiency of resource management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.