Milk microbiota has a great influence on the safety and quality of dairy products. However, few studies have investigated the variations of bacterial composition in raw milk. In this study, raw milk samples were collected in 12 successive months, and their bacterial compositions were determined by 16 S rRNA gene sequencing. The highest diversity of bacterial composition was detected in June, while the lowest was in December. Firmicutes, Proteobacteria and Actinobacteria were the most abundant phyla and exhibited a counter-balanced relationship. Pseudomonas, Lactococcus and Acinetobacter were the most prevalent genera (>1%), and a tiny core microbiota (Acinetobacter and Pseudomonas) was observed. Temperature and humidity were the determining factors for most variation in bacterial compositions at both the phylum and genus levels. Higher abundances of Pseudomonas, Propionibacterium and Flavobacterium were correlated with low temperature. Furthermore, Pseudomonas/Propionibacterium and Lactobacillus/Bifidobacterium were two pairs of genera that had synergistic effects. Associations between the microbiota and milk quality parameters were analyzed. The abundances of Propionibacterium and Pseudoalteromonas were negatively correlated to total bacterial count, which meant that they helped to maintain milk quality, while a series of environmental microorganisms contributed to the spoilage of raw milk.
Lacto-N-neotetraose (LNnT), one of the oligosaccharides in human milk, has many beneficial effects on infant health. In a recent work, we have constructed a recombinant Bacillus subtilis strain for the production of LNnT. Here, we further improved LNnT production with a xylose-induced clustered regularly interspaced short palindromic repeats interference system. In particular, the expressions of pf kA and pyk genes in the Embden−Meyerhof−Parnas pathway module, zwf gene in the pentose phosphate pathway module, and mnaA gene in the teichoic acid synthesis module were downregulated. The LNnT titer was increased from 1.32 to 1.55 g/L. Furthermore, to improve the conversion efficiency of lacto-N-triose II to LNnT, we knocked out tuaD gene in branch pathway and improved the expression of lgtB gene, resulting in the further increase of LNnT titer to 2.01 g/L. Finally, the addition time and amount of inducer xylose were optimized, and LNnT titer reached 2.30 g/L in shake flask and 5.41 g/L in 3 L bioreactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.