Sweet potato virus disease (SPVD) is one of the main virus diseases in sweet potato [Ipomoea batatas (L.) Lam] that seriously affects the yield of sweet potato. Therefore, the establishment of a simple, rapid and effective method to detect SPVD is of great significance for the early warning and prevention of this disease. In this study, the experiment was carried out in two years to compare the grafting method and side grafting method for three sweet potato varieties, and the optimal grafting method was selected. After grafting with seedlings infected with SPVD, the symptomatic diagnosis and serological detection were performed in 86 host varieties, and the differences in SPVD resistance were determined by fluorescence quantitative PCR (qRT-PCR) and nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). The results showed that the survival rate of grafting by insertion method was significantly higher than that by side grafting method, and the disease resistance of different varieties to sweet potato virus disease was tested. The detection method established in this study can provide theoretical basis for identification and screening of resistant sweet potato varieties.
Potato (Solanum tuberosum L.) growth and production is highly dependent on potassium (K) levels in the soil. Southwest China is the largest potato production region but it has low availability of soil potassium. To assess the genetic variation in K use efficiency, 20 potato genotypes were collected to compare the yield and K content in a pot experiment. Moreover, ‘Huayu-5’ and ‘Zhongshu-19’ were cultivated in five K applications to investigate the K distribution and sucrose in different organs. The results indicated that there were highly significant effects of K, genotype and K×G interactions on tuber yield, plant and tuber K content, plant K uptake efficiency and K harvest index. Cluster analysis classified 20 potato genotypes into four types: DH (high efficiency at low and high K application), LKH (high efficiency at low K application), HKH (high efficiency at high K application) and DL (low efficiency at low and high K application). The potassium distribution percentage in the tubers of the potassium-efficient genotype was higher than that of the potassium-inefficient genotype under low potassium application. The sucrose content in the tuber gently declined as the application of K rose in both cultivars, and that in the tuber of ‘Huayu-5’ was higher than that in ‘Zhongshu-19’. ‘Huayu-5’ reached the highest yield when the potassium application was 159.45 kg ha-1, and ‘Zhongshu-19’ reached the highest yield when the potassium application was 281.4 kg ha-1. This study indicated that genetic variation for K utilization efficiency existed among 20 genotypes, and yield in low K application and relative yield were suitable criteria for screening K utilization efficiency genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.