A facile method to construct reversible thermoresponsive switching for bacteria killing and detachment was currently developed by host-guest self-assembly of β-cyclodextrin (β-CD) and adamantane (Ad). Ad-terminated poly(N-isopropylacrylamide) (Ad-PNIPAM) and Ad-terminated poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (Ad-PMT) were synthesized via atom transfer radical polymerization, and then assembled onto the surface of β-CD grafted silicon wafer (SW-CD) by simply immersing SW-CD into a mixed solution of Ad-PNIPAM and Ad-PMT, thus forming a thermoresponsive surface (SW-PNIPAM/PMT). Atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and water contact angle (WCA) analysis were used to characterize the surface of SW-PNIPAM/PMT. The thermoresponsive bacteria killing and detachment switch of the SW-PNIPAM/PMT was investigated against Staphyloccocus aureus. The microbiological experiments confirmed the efficient bacteria killing and detachment switch across the lower critical solution temperature (LCST) of PNIPAM. Above the LCST, the Ad-PNIPAM chains on the SW-PNIPAM/PMT surface were collapsed to expose Ad-PMT chains, and then the exposed Ad-PMT would kill the attached bacteria. While below the LCST, the previously collapsed Ad-PNIPAM chains became more hydrophilic and swelled to cover the Ad-PMT chains, leading to the detachment of bacterial debris. Besides, the proposed method to fabricate stimuli-responsive surfaces with reversible switches for bacteria killing and detachment is facile and efficient, which creates a new route to extend the application of such smart surfaces in the fields requiring long-term antimicrobial treatment.
The capabilities of conductive nanomaterials to be produced in liquid form with well‐defined chemical, physical, and biological properties are highly important for the construction of next‐generation flexible bioelectronic devices. Although functional graphene nanomaterials can serve as attractive liquid nanoink platforms for the fabrication of bioelectronics, scalable synthesis of graphene nanoink with an integration of high colloidal stability, water processability, electrochemical activity, and especially bioactivity remains a major challenge. Here, a facile and scalable synthesis of supramolecular‐functionalized multivalent graphene nanoink (mGN‐ink) via [2+1] nitrene cycloaddition is reported. The mGN‐ink unambiguously displays a well‐defined and flat 2D morphology and shows good water processability and bioactivity. The uniquely chemical, physical, and biological properties of mGN‐ink endow the constructed bioelectronic films and nanofibers with high flexibility and durability, suitable conductivity and electrochemical activity, and most importantly, good cellular compatibility and a highly efficient control of stem‐cell spreading and orientation. Overall, for the first time, a water‐processable and bioactive mGN‐ink is developed for the design of flexible and electrochemically active bioelectronic composites and devices, which not only presents manifold possibilities for electronic‐cellular applications but also establishes a new pathway for adapting macroscopic usages of graphene nanomaterials in bionic, biomedical, electronic, and even energy fields.
Inspired from the chemical and biological benefits of heparinized hydrogels, this study presented the substituted hemocompatible design of graphene oxide based heparin-mimicking polymeric hydrogels for versatile biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.