Increasing evidence reveals that aberrant expression of microRNA contributes to the development and progression of colon cancer, but the roles of microRNA-506 (miR-506) in colon cancer remain elusive. Here, we demonstrated that miR-506 was down-regulated in colon cancer tissue and cells and that miR-506 expression was inversely correlated with EZH2 expression, tumor size, lymph node invasion, TNM stage and metastasis. A high level of miR-506 identified patients with a favorable prognosis. In vitro and in vivo experiments confirmed that miR-506 inhibits the proliferation and metastasis of colon cancer, and a luciferase reporter assay confirmed that EZH2 is a direct and functional target of miR-506 via the 3′UTR of EZH2. The restoration of EZH2 expression partially reversed the proliferation and invasion of miR-506-overexpressing colon cancer cells. Moreover, we confirmed that the miR-506-EZH2 axis inhibits proliferation and metastasis by activating/suppressing specific downstream tumor-associated genes and the Wnt/β-catenin signaling pathway. Taking together, our study sheds light on the role of miR-506 as a suppressor for tumor growth and metastasis and raises the intriguing possibility that miR-506 may serve as a new potential marker for monitoring and treating colon cancer.
JARID1B is a member of the family of JmjC domain-containing proteins that removes methyl residues from methylated lysine 4 on histone H3 lysine 4 (H3K4). JARID1B has been proposed as an oncogene in many types of tumors; however, its role and underlying mechanisms in hepatocellular carcinoma (HCC) remain unknown. Here we show that JARID1B is elevated in HCC and its expression level is positively correlated with metastasis. In addition Kaplan-Meier survival analysis showed that high expression of JARID1B was associated with decreased overall survival of HCC patients. Overexpression of JARID1B in HCC cells increased proliferation, epithelial-mesenchymal transition, migration and invasion in vitro, and enhanced tumorigenic and metastatic capacities in vivo. In contrast, silencing JARID1B in aggressive and invasive HCC cells inhibited these processes. Mechanistically, we found JARID1B exerts its function through modulation of H3K4me3 at the PTEN gene promoter, which was associated with inactive PTEN transcription. PTEN overexpression blocked JARID1B-driven proliferation, EMT, and metastasis. Our results, for the first time, portray a pivotal role of JARID1B in stimulating metastatic behaviors of HCC cells. Targeting JARID1B may thus be a useful strategy to impede HCC cell invasion and metastasis.
The Jumonji domain-containing chromatin remodeling factor JMJD3 has important roles in development and cancer. Here, we report a pivotal role for JMJD3 in sustaining the phenotype of aggressive hepatocellular carcinomas. Expression levels of JMJD3 in clinical specimens of hepatocellular carcinoma correlated inversely with patient survival. In hepatocellular carcinoma cells, we found that enforcing its overexpression induced epithelial-mesenchymal transition (EMT), invasive migration, stem cell-like traits, and metastatic properties. Conversely, silencing JMJD3 in hepatocellular carcinoma cells overexpressing it inhibited these aggressive phenotypes. Mechanistically, JMJD3 modulated H3K27me3 in the SLUG gene promoter, a histone mark associated with active SLUG transcription. SLUG silencing blocked JMJD3-induced EMT, stemness, and metastasis. Furthermore, SLUG expression in hepatocellular carcinoma clinical specimens correlated positively with JMJD3 expression. Our results establish JMJD3 as a critical driver of hepatocellular carcinoma stem cell-like and metastatic behaviors, with implications for prognosis and treatment. Cancer Res; 76(22); 6520-32. Ó2016 AACR.
BackgroundIncreasing evidence supports the association of CTNND1 with tumor development and progression. However, the mechanism and clinical significance of CTNND1 deregulation in hepatocellular carcinoma (HCC) remains unknown. In this study, we aim to investigate the role of CTNND1 in HCC.MethodsqRT-PCR and immunohistochemical analyses were used to measure the levels of CTNND1 in HCC specimens and HCC cell lines. CTNND1 and shCTNND1 were transfected into HCC cell lines to investigate its role in HCC. Cell migration and invasion were measured by Transwell and Matrigel analyses in vitro. In vivo metastasis assays were performed in SCID mice.ResultsIn clinical HCC samples, we found that CTNND1 expression was significantly up-regulated in cancer lesions compared with paired normal liver tissues. By silencing or overexpressing CTNND1 in HCC cells, we found that CTNND1 could promote cell proliferation, migration, and invasion in vitro. An in-vivo assay showed that CTNND1 dramatically promoted HCC cell tumor formation and metastasis. Moreover, CTNND1 promoted HCC metastasis, at least in part, by indirectly enhancing Wnt/β-catenin signaling. Consistent with these results, the expression of CTNND1 was positively correlated with β-catenin, WNT11, Cyclin D1, and BMP7 expression in human HCC specimens.ConclusionsOur study provides evidence that CTNND1 functions as a novel tumor oncogene in HCC, and may be a potential therapeutic target for HCC management.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0344-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.