In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been computed for abelian gauged linear sigma models (GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous methods have been intractable. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. We also utilize recent advances in supersymmetric localization to compute A/2 correlation functions and check the general result in examples. In this paper we focus on physics derivations and examples; in a companion paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology ring.December 2015
We study the moduli space of A/2 half-twisted gauged linear sigma models for NEF Fano toric varieties. Focusing on toric deformations of the tangent bundle, we describe the vacuum structure of many (0,2) theories, in particular identifying loci in parameter space with spontaneous supersymmetry breaking or divergent ground ring correlators. We find that the parameter space of such an A/2 theory and its ground ring is in general a moduli stack, and we show in examples that with suitable stability conditions it is possible to obtain a simple compactification of the moduli space of smooth A/2 theories.
Let the vector bundle $\mathcal{E}$ be a deformation of the tangent bundle
over the Grassmannian $G(k,n)$. We compute the ring structure of sheaf
cohomology valued in exterior powers of $\mathcal{E}$, also known as the
polymology. This is the first part of a project studying the quantum sheaf
cohomology of Grassmannians with deformations of the tangent bundle, a
generalization of ordinary quantum cohomology rings of Grassmannians. A
companion physics paper [arXiv:1512.08586] describes physical aspects of the
theory, including a conjecture for the quantum sheaf cohomology ring, and
numerous examples.Comment: 32 pages, comments welcome; v2: material on moduli added to section
4, and various typos correcte
For a class of monadic deformations of the tangent bundles over nef-Fano smooth projective toric varieties, we study the correlators using quantum sheaf cohomology. We prove a summation formula for the correlators, confirming a conjecture by McOrist and Melnikov in physics literature. This generalizes the Szenes-Vergne proof of Toric Residue Mirror Conjecture for hypersurfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.