Here, we describe a DNA circuit-aided, origami nanodevice-based plasmonic system, which performs DNA-regulated, cascade amplification of faint chemical/biological signals. In this system, two goldnanorods (GNRs) are co-assembled onto a DNA lockcontaining, tweezer-like DNA origami template. Logic circuits serve as recognition and amplification elements for specific messengers, producing DNA keys for driving conformational changes of the plasmonic nanodevices. In the presence of input signals including nucleic acids, adenosines, chiral tyrosinamides or specific receptors expressed by tumor cells, the plasmonic nanodevices can be activated to perform dynamic structural motions, reporting robust responses via plasmonic circular dichroism (CD) spectral changes. This DNA nanodevice-based system provides a different design to enrich the strategies for constructing synthetic nanomachines, enabling the customized bottom-up nanostructure construction for sensitive biological signaling.
Ice thickness has a great influence on glacial movement and ablation. Over the course of the change in thickness, area and external climate, the dynamic process of how glaciers change and whether a glacier’s changes in melting tend to be stable or irregular is a problem that needs to be studied in depth. In our study, the changes in the dynamic process of the No. 8 Glacier in Hei Valley (H8) under the conditions of different thicknesses in 1969 and 2009 were simulated based on the Full-Stokes code Elmer/Ice (http://www.csc.fi/elmer/). The results were as follows: (1) The thickness reduction in glaciers would lead to a decrease in ice surface tension and basal pressure and friction at the bottom, and the resulting extensional and compressional flow played an important role in the variations in glacial velocity. (2) The force at the bottom of the glacier was key to maintaining the overall stress balance, and the glaciers that often melted and collapsed in bedrock were more easily destroyed by the overall force balance and increased change rate of glacial thaw. (3) Temperature changes at different altitudes affected the ice viscous force. The closer the ice surface temperature was to the melting point, the greater the influence of temperature changes on the ice viscous force and ice surface velocity. Finally, we used the RCP 4.8 and 8.5 climate models to simulate the changes in H8 over the next 40 years. The results showed that with some decreases in ice surface compression and tension, the gravity component changes caused by local topography begin to control the ice flow movement on the surface of glacier, and melting of the glacial surface will appear as an irregular change. The simulation results further confirmed that the fluctuation in glacial dynamic characteristics could be attributed to the change in the gravity component caused by ablation.
Humic acid plays an important role in improving grain yield and reducing N losses. In order to explore the effects of humic acid added to controlled-release fertilizer on summer maize yield, nitrogen use efficiency (NUE) and the characteristics of greenhouse gas (GHG) emissions in maize farmland soil, a two-year field experiment was set up. The treatments consisted of two fertilizers: 3% humic acid added to controlled-release fertilizer (HACRF), controlled-release fertilizer (CRF) and a control (without N fertilizer, N0). The results demonstrate that the yield and NUE of summer maize were significantly increased with the addition of humic acid in N fertilizer. Compared with N0 and CRF, the yield of maize was increased by 99.1% and 5.0%, respectively. Compared with CRF, the contents of soil ammonium–nitrogen (NH4+-N) and nitrate–nitrogen (NO3−-N) in HACRF were higher during early maize growth stage but lower during the late grain-filling stage. The NUE and soil nitrogen interdependent rate of HACRF were significantly increased by 4.6–5.4% and 7.2–11.6%, respectively, across the years compared with those of CRF. Moreover, the annual cumulative N2O emissions in HACRF were decreased by 29.0% compared with the CRF. Thus, the global warming potential and greenhouse emission intensity of HACRF were significantly decreased by 29.1% and 32.59%, respectively, compared with CRF. In conclusion, adding humic acid to controlled-release fertilizer can result in higher yield and nitrogen uptake, improve nitrogen use efficiency and reduce greenhouse gas emissions, which have better yield and environmental effects.
The production of summer maize is greatly affected by nitrogen (N) sources through regulating root growth and distribution. Four N treatments in the field experiment were designed as UAN (urea ammonium nitrate solution was applied under traditional side-dressing method), urea (urea was applied under traditional side-dressing method), UWFI (UAN was applied underwater and fertiliser integration technology) and CK (no N applied). The results showed that the root length density, surface area density and volume of DH605 (mid-late hybrid) and DH518 (mid-early hybrid) under UWFI were higher than other treatments, especially in shallow layers. The root absorption area of each soil layer under N application treatments varied with the growth stage. The grain yield and the accumulations of N, P and K in the shoots showed the trend of UWFI > UAN > urea > CK. Compared with UAN and urea, the nitrogen agronomic efficiency of UWFI treatment increased by 40.5~78.6%, and the nitrogen partial factor productivity increased by 4.75~7.61%. Consequently, rational application of UAN would improve root traits, nutrient uptake and utilisation, and yield of summer maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.