Purpose Autonomous driving depends on the collection, processing and analysis of environmental information and vehicle information. Environmental perception and processing are important prerequisite for the safety of self-driving of vehicles; it involves road boundary detection, vehicle detection, pedestrian detection using sensors such as laser rangefinder, video camera, vehicle borne radar, etc. Design/methodology/approach Subjected to various environmental factors, the data clock information is often out of sync because of different data acquisition frequency, which leads to the difficulty in data fusion. In this study, according to practical requirements, a multi-sensor environmental perception collaborative method was first proposed; then, based on the principle of target priority, large-scale priority, moving target priority and difference priority, a multi-sensor data fusion optimization algorithm based on convolutional neural network was proposed. Findings The average unload scheduling delay of the algorithm for test data before and after optimization under different network transmission rates. It can be seen that with the improvement of network transmission rate and processing capacity, the unload scheduling delay decreased after optimization and the performance of the test results is the closest to the optimal solution indicating the excellent performance of the optimization algorithm and its adaptivity to different environments. Originality/value In this paper, the results showed that the proposed method significantly improved the redundancy and fault tolerance of the system thus ensuring fast and correct decision-making during driving.
Purpose With the continuous technological development of automated driving and expansion of its application scope, the types of on-board equipment continue to be enriched and the computing capabilities of on-board equipment continue to increase and corresponding applications become more diverse. As the applications need to run on on-board equipment, the requirements for the computing capabilities of on-board equipment become higher. Mobile edge computing is one of the effective methods to solve practical application problems in automated driving. Design/methodology/approach In this study, in accordance with practical requirements, this paper proposed an optimal resource management allocation method of autonomous-vehicle-infrastructure cooperation in a mobile edge computing environment and conducted an experiment in practical application. Findings The design of the road-side unit module and its corresponding real-time operating system task coordination in edge computing are proposed in the study, as well as the method for edge computing load integration and heterogeneous computing. Then, the real-time scheduling of highly concurrent computation tasks, adaptive computation task migration method and edge server collaborative resource allocation method is proposed. Test results indicate that the method proposed in this study can greatly reduce the task computing delay, and the power consumption generally increases with the increase of task size and task complexity. Originality/value The results showed that the proposed method can achieve lower power consumption and lower computational overhead while ensuring the quality of service for users, indicating a great application prospect of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.