Purpose Autonomous driving depends on the collection, processing and analysis of environmental information and vehicle information. Environmental perception and processing are important prerequisite for the safety of self-driving of vehicles; it involves road boundary detection, vehicle detection, pedestrian detection using sensors such as laser rangefinder, video camera, vehicle borne radar, etc. Design/methodology/approach Subjected to various environmental factors, the data clock information is often out of sync because of different data acquisition frequency, which leads to the difficulty in data fusion. In this study, according to practical requirements, a multi-sensor environmental perception collaborative method was first proposed; then, based on the principle of target priority, large-scale priority, moving target priority and difference priority, a multi-sensor data fusion optimization algorithm based on convolutional neural network was proposed. Findings The average unload scheduling delay of the algorithm for test data before and after optimization under different network transmission rates. It can be seen that with the improvement of network transmission rate and processing capacity, the unload scheduling delay decreased after optimization and the performance of the test results is the closest to the optimal solution indicating the excellent performance of the optimization algorithm and its adaptivity to different environments. Originality/value In this paper, the results showed that the proposed method significantly improved the redundancy and fault tolerance of the system thus ensuring fast and correct decision-making during driving.
With the rapid development of sensor technology for automated driving applications, the fusion, analysis, and application of multimodal data have become the main focus of different scenarios, especially in the development of mobile edge computing technology that provides more efficient algorithms for realizing the various application scenarios. In the present paper, the vehicle status and operation data were acquired by vehicle-borne and roadside units of electronic registration identification of motor vehicles. In addition, a motion model and an identification system for the single-vehicle lane-change process were established by mobile edge computing and self-organizing feature mapping. Two scenarios were modeled and tested: lane change with no vehicles in the target lane and lane change with vehicles in the target lane. It was found that the proposed method successfully identified the stochastic parameters in the process of driving trajectory simulation, and the standard deviation between simulation and the measured results obeyed a normal distribution. The proposed methods can provide significant practical information for improving the data processing efficiency in automated driving applications, for solving single-vehicle lane-change applications, and for promoting the formation of a closed loop from sensing to service.
With the rapid development of Internet of Things technology, RFID technology has been widely used in various fields. In order to optimize the RFID system hardware deployment strategy and improve the deployment efficiency, the prediction of the RFID system identification rate has become a new challenge. In this paper, a neighborhood rough set and random forest (NRS-RF) combination model is proposed to predict the identification rate of an RFID system. Firstly, the initial influencing factors of the RFID system identification rate are reduced using neighborhood rough set theory combined with the principle of heuristic attribute reduction of neighborhood weighted dependency, thus obtaining a kernel factor subset. Secondly, a random forest prediction model is established based on the kernel factor subset, and a confusion matrix is established using out-of-bag (OOB) data to evaluate the prediction results. The test is conducted under the constructed RFID experimental environment, whose results showed that the model can predict the identification rate of the RFID system in a fast and efficient way, and the classification accuracy can reach 90.5%. It can effectively guide the hardware deployment and communication parameter protocol setting of the system and improve the system performance. Compared with BP neural network (BPNN) and other prediction models, NRS-RF has shorter prediction time and faster calculation speed. Finally, the validity of the proposed model was verified by the RFID intelligent archives management platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.