Navigation safety is one of the primary operational requirements for unmanned surface vehicles (USVs) in a complex marine environment, mainly guaranteed by a reliable path planning system for collision avoidance. This work proposes a novel weighted sum multi-objective optimisation strategy for USV collision avoidance path planning in restricted waters. In particular, the coefficients of different objectives could be tuned to emphasise the most critical design consideration under varying navigation scenarios. Moreover, in addition to the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs), the terrain and weather constraints were also considered in the path planning system. The proposed USV collision avoidance path planning framework’s effectiveness was demonstrated through numerical simulations and hardware-in-the-loop (HIL) tests. The numerical simulation results indicate that the proposed method could avoid collision with dynamic and static obstacles, and it is also adaptive to different navigation restrictions and preferences. Moreover, a USV navigation platform was established by incorporating true Automatic Identification System (AIS) signals, and HIL tests were performed with real-time AIS data in a water channel in the Zhoushan archipelago. The results demonstrate that the proposed USV path planning strategy is applicable in restricted waters with complex terrains and weather constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.