The inviscid instability of O(ε) two-dimensional periodic flows to spanwise-periodic longitudinal vortex modes in parallel O(1) shear flows is considered. In such cases, not only is the effect of fluctuations upon the mean state important but also the influence of the developing mean flow on the fluctuating part of the motion. The former is described by a generalized Lagrangian-mean formulation; the latter by a modified Rayleigh equation. Of specific interest is whether the spanwise distortion of the wave field feeds back to enhance or inhibit instability to longitudinal vortex form. Two cases are considered in detail: uniform shear between wavy walls and non-uniform shear beneath free-surface waves. In both cases wave distortion acts to inhibit, and in some circumstances curtail, instability for all but the shortest waves.
Parallel inviscid O(1) shear interacting with O(ε) spanwise-independent neutral rotational Rayleigh waves are used to model turbulent boundary layer flow over small-amplitude rigid wavy terrain. Of specific interest is the instability of the flow to spanwise-periodic initially exponentially growing longitudinal vortex modes via the Craik–Leibovich CL2-O(1) instability mechanism and whether it is this instability mechanism that gives rise to longitudinal vortices evident in the recent experiments of Gong et al. (1996). In modelling the flow, wave and turbulence length scales are assumed sufficiently disparate to cause minimal interaction. This allows the primary mean velocity profile to be specified. Two profiles were chosen: a power law and the logarithmic law of the wall. Important in wave–mean interactions of this class are the effect of wave-induced fluctuations upon the mean state and the influence of the developing mean flow on the fluctuating part of the motion. The former is described by a generalized Lagrangian-mean formulation; the latter by a modified Rayleigh equation. Together they comprise an eigenvalue problem for the growth rate appropriate to the initial stages of the instability. Both primary mean flows are unstable to longitudinal vortex form in the presence of Rayleigh waves whose amplitudes diminish with altitude. Moreover the interaction is most unstable for streamwise wavenumbers α = O(1), the growth rate increasing with increased spanwise wavenumber. In comparing the results with experiment, it is first shown that spanwise-independent waves excited in Gong et al.'s experiment depict velocity fluctuations whose amplitudes diminish with altitude in accord with those for appropriate Rayleigh waves. Concordantly, the longitudinal vortices depict transverse velocity components that are weaker by a factor of ε than the axial perturbation and are observed to grow at a rate consistent with exponential growth. All are key features of CL2-O(1), although the observed growth rate is not in accord with the maximal suggested by inviscid instability theory. Rather it appears that the spanwise wavenumber takes a value at which energy is extracted from the mean motion in an optimal volume-averaged sense while minimizing energy loss to both viscous dissipation and small-scale turbulence. It is concluded that the CL2-O(1) instability mechanism is physically realizable and that the data of Gong et al. represent the first documented observations thereof.
Objectives/Hypothesis: About 260,000 septoplasties are performed annually in the US to address nasal septal deviation (NSD). Yet, we do not consistently understand what aspects of NSD result in symptoms.Study Design: Blinded cohort study. Methods: Two fellowship-trained surgeons blindly reviewed computerized tomography (CTs) of 10 confirmed NSD patients mixed with 36 healthy controls. All patients were correctly identified, however, 24/36 controls were falsely identified by both surgeons as patients (33.3% specificity), which were grouped as asymptomatic NSD (aNSD), while the remaining controls as non-NSD (healthy). Acoustic rhinometry, rhinomanometry, individual CT-based computational fluid dynamics and nasal sensory testing were applied to address the puzzling questions of why these aNSD had no symptoms and, more fundamentally, what caused symptoms in sNSD patients.Results: aNSD reported no nasal symptoms -
The aim of this work is to experimentally examine flow over and near random porous media. Different porous materials were chosen to achieve porosity ranging from 0.95 to 0.99. In this study, we report the detailed velocity measurements of the flow over and near random porous material inside a rectangular duct using a planar particle image velocimetry (PIV) technique. By controlling the flow rate, two different Reynolds numbers were achieved. We determined the slip velocity at the interface between the porous media and free flow. Values of the slip velocity normalized either by the maximum flow velocity or by the shear rate at the interface and the screening distance K 1/2 were found to depend on porosity. It was also shown that the depth of penetration inside the porous material was larger than the screening length using Brinkman's prediction. Moreover, we examined a model for the laminar coupled flow over and inside porous media and analyzed the permeability of a random porous medium. This study provided detailed analysis of flow over and at the interface of various specific random porous media using the PIV technique. This analysis has the potential to serve as a first step toward using random porous media as a new passive technique to control the flow over smooth surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.